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Abstract

Our model builds upon the StreamPETR paradigm. To
improve the robustness of detection, particularly in chal-
lenging corruption scenarios, we first follow the 2D bound-
ing box auxiliary supervision of RepDETR3D. Innovatively,
our approach adds more precise depth information into
the extracted 2d feature by integrating an intensive depth
prediction network, which enhances feature extraction and
contributes to more accurate 3D bounding box regression.
Additionally, for orientation estimation, we encode the ori-
entation angle with three phase-shifted encoding channels,
proposed as Phase-Shifting Coder (PSC). Experimental re-
sults validate that incorporating more angle information via
PSC enhances model robustness in capturing subtle angular
variations and differences, consequently elevating orienta-
tion accuracy metrics.

1. Introduction

Accurate 3D detection of the surrounding environment is
crucial in fields such as autonomous driving and robotics,
which enables a more comprehensive understanding of the
surrounding scene [1–6], including object translation, sizes,
and velocity, and facilitates more effective action planning.
In recent years, with advancements in computer vision and
deep learning, significant progress has been made in the field
of 3D detection. Currently, pure vision-based 3D detection
can be categorized academically into four major classes: the
LSS series, BEVFormer series [7], PETR series [8], and
Sparse4D [9] series of 3D detection solutions.

The complexity of autonomous driving scenarios poses
significant challenges to research in this field, and the ro-
bustness of existing 3D scene perception models in vari-
ous challenging scenarios remains inadequately evaluated
[10]. Under the pure visual detection paradigm, it fails to
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adequately address various complex lighting and weather
conditions, such as low visibility scenarios in nighttime, rain,
snow, or fog scenes.

To address robust detection in challenging scenarios,
we adopt the efficient paradigm of 3D detection, Stream-
PETR [11], which inherently features strong spatiotemporal
modeling and 3D detection performance. Building upon this
foundation, we incorporate deformable attention to serve as
spatial cross-attention and utilize 2D proposal loss for aux-
iliary supervision to optimize feature extraction networks
following RepDETR3D. Furthermore, we add an intensive
depth prediction network, integrating depth information su-
pervision to enhance the positional accuracy of 3D detection
boxes. To tackle image corruption in challenging scenarios,
we propose a robust encoding method named PSC for orien-
tation angle prediction, leveraging the diversity provided by
additional angle information to better capture subtle angular
variations and differences.

Our model achieved 3rd place in Track 1: robust BEV
detection of the 2024 RoboDrive Challenge [12]. Simul-
taneously, it demonstrated significant performance on the
validation set of nuScenes. This paper provides a detailed
analysis of our model’s performance on both datasets, high-
lighting its effectiveness in real-world scenarios.

2. Approach

2.1. One Stage Mono3D Head

2D Detection Network: Given that the current model en-
counters challenges in various complex lighting and weather
conditions, such as low visibility scenarios in nighttime,
backlit scenes, and adverse weather like rain, snow, or fog,
where visual information in image features is prone to inter-
ference. To address this problem, we incorporate a one-stage
2D detection network YOLOX [13] following RepDETR3D.
By employing a 2D detection task as auxiliary supervision,
we enable the backbone network to capture better features.

YOLOX adopts the Anchor-Free paradigm, that is the
prediction head predicts targets for each grid of the feature
map and selects the targets with the highest peak confidence
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Figure 1. The main architecture of FocalAngel3D: surrounding images are input to the image encoder to extract images features, then firstly
go through one stage mono3d prediction head, which consists of YOLOX[13] and our intensive depth network. The second stage is the
FocalAngel3D decoder, the history queries, and the initialized queries are firstly input to the MLN for the temporal alignment, followed by a
hybrid attention module. Deformable attention is implemented between the output of the updated current frame queries and image features,
followed by the classification head and regression head respectively, where our phase shift coder method is used for angle prediction.

score as the final result. We benefit also from replacing the
coupled detection head with a decoupled detection head,
where Class, Regression, and IoU predictions are handled
by three separate branches rather than a single 1x1 convolu-
tional layer, which can enhance the network’s convergence
speed and accuracy [14]. After that, simOTA is used to as-
sign positive predictions to GT. With the cost matrix and
the dynamic number k of anchors required for each GT, the
target anchors are selected.

Intensive Depth Head: The one-stage 2D detection net-
work adopts the architecture of YOLOX [13]. To enhance
the accuracy of 3D position prediction, we incorporated a
depth prediction head into the existing architecture alongside
the original class head, position head, and objectness head.
This addition facilitates improved learning of depth features
in the network. In existing mono3D paradigms for depth
supervision, some depth prediction methods adopt the sparse
paradigm, which supervises only the depth at the center of
the 2D detection boxes. However, this sparse depth supervi-
sion method can only predict depth for a limited number of
predicted box centers, resulting in insufficient convergence
during early training stages. To mitigate this issue, we in-
troduced dense depth prediction. Specifically, we conduct
depth map prediction for the four feature maps with different

shapes. We adapt 1× 1 Conv to output depth prediction val-
ues for these feature positions. Supervision is applied within
the range of 60 meters, with gt depths spaced at intervals of
0.5 meters. We construct one-hot labels and the depth pre-
diction loss is calculated using Binary Cross-Entropy (BCE)
loss.

2.2. FocalAngle3D Decoder

Temporal Fusion: We align temporal queries to the cur-
rent frame using the MLN structure following StreamPETR.
Specifically, for historical queries, we initially align their
3D coordinates to the position of the current frame by ego-
motion matrix. Subsequently, we apply an MLP layer to
embed the ego-motion matrix, velocity, and time interval to
r and β. Then, we utilize r and β to update the query and
positional embedding. To ensure embedding consistency, we
also employ the MLN to process the initialized queries for
the current frame, with their velocity and time interval values
set to 0. After that, we concatenate the memory query pro-
cessed by MLN with the current query processed by MLN
to a hybrid query. This hybrid query then acts as both keys
and values and subsequently performs hybrid attention with
the current query processed by MLN

Spatial Fusion: The output current query from the hy-
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brid attention will be processed in the same method as PETR.
Instead of using the original method of doing cross-attention
between image tokens and queries, we use deformable at-
tention, which projects the 3d object query onto the image
features, helping to reduce the amount of computation and
facilitating the interaction of the query with the relevant
positional features.

2.3. Phase Shift Coder

In current BEV methods, the encoding method of angles
commonly utilizes sine-cosine encoding [7, 8]. However,
this encoding method only utilizes two values, which are
sin(x) and cos(x), thereby being limited by dimensionality
in representing angles. While these two values can provide
sufficient information to represent angles, they may restrict
the model’s ability to capture subtle variations in angles in
certain scenarios.

Therefore, in our competition, we introduced a novel
angle encoding method called phase-shift encoding. This
method utilizes three values,which are cos(x), cos(x+120)
and cos(x + 240). In contrast to the two values used in
sine-cosine encoding, phase-shift encoding provides more
angle information. This diversity enables the model to better
capture subtle variations and differences in angles. The three
values are phased at intervals of 120 degrees, providing
additional constraints and assistance, making it easier for the
model to distinguish differences between different angles.

During training, for each bounding box, our angle pre-
diction head predicts the values of three encodings. For
each ground truth angle phi, which ranges from −π to π, we
encode the ground truth using the following equation and
calculate the L1-loss with the predicted values.

x1 = cos(φ+ 120◦)

x2 = cos(φ+ 240◦)

x3 = cos(φ)

(1)

During inference, the output of the angle prediction head
is the three phase-shift encoding values predicted by the
network. At this stage, the predicted values can be decoded
using the following equation to obtain the actual rotation
angle, where Nstep = 3 represents 3 steps of phase shift.

φ = − arctan

∑Nstep

n=1 xn sin
(

2nπ
Nstep

)
∑Nstep

n=1 xn cos
(

2nπ
Nstep

) (2)

In theory, this phase-shift encoding can be adjusted and
modified Flexibly. By altering the phase difference, the en-
coding dimension can be changed to adapt to different prob-
lems and scenarios. For example, Nstep can be adjusted
to 5 steps, 7 steps, or other odd numbers. This flexibility
enhances the versatility and adaptability of phase-shift en-
coding. Since PSC encoding is derivable, we can insert

Figure 2. Phase shifting coder: we show the change of the coded
principal of four different angles and the corresponding coded
values. Yellow, red, and blue bars correspond to x1, x2, and x3.

the decoding process directly into the forward structure of
the network during training without using encoding. If this
approach is adopted, PSC becomes part of the network’s
forward structure.

3. Experiments
3.1. Datasets

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [12] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [1] (which contains 700 scenes) and tested
on the held-out competition evaluation sets (which contains
150 scenes). The evaluation data was created following
RoboDepth [15–17], RoboBEV [10, 18, 19], and Robo3D
[20, 21]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR
failures. For more details, please refer to the corresponding
GitHub repositories.

3.2. Experiment Settings

The focalAngle3D network is implemented using the Py-
Torch framework [22] and is based on the MMDetection3D
codebase [23]. 8 NVIDIA A100 GPUs are used in our model
training experiments, each with a batch size of 2. We use
EVA02-L [24] as the backbone of the model, which is pre-
trained on the COCO dataset [25]. Adam is used as the
optimizer, the learning rate of the model is set to 4e − 4
and the learning rate of the backbone network is set to 0.1
times the base learning rate. CosineAnnealing is used as the
learning rate strategy, and the warmup phase is the initial
500 iterations.

3.3. Ablation Study

As listed in Table 1, ablation experiments show that after
using the intensive depth network supervision, the image fea-
ture with better depth information is learned in the mono3d
stage, which helps to regress more accurate 3d box posi-
tions and more accurate speed in FocalAngle3D decoder, as
reflected in the 0.01 improvement in mATE, and 0.01 im-
provement in mAVE. After using the PSC, the mAOE metric
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Table 1. FocalAngle3D results on nuScenes val dataset.

Method depth psc NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

FocalAngle3D 0.613 0.531 0.529 0.255 0.296 0.240 0.201
FocalAngle3D ✓ 0.618 0.537 0.518 0.254 0.299 0.228 0.206
FocalAngle3D ✓ ✓ 0.620 0.536 0.529 0.251 0.276 0.224 0.196

Table 2. FocalAngle3D results on corruption test dataset.

Method NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

FocalAngle3D 0.490 0.436 0.613 0.375 0.441 0.521 0.328

improves by 0.02 compared to the baseline model, reflecting
the improvement in angle prediction by this coding way, and
this enrichment of coded information allows the model to
better capture subtle changes and differences in angle.

4. Conclusion
In order to improve the robustness of the model, we improved
the network in the competition by adding an intensive depth
prediction network to help the network extract the 2D fea-
tures with more accurate depth positions, which is beneficial
to the accuracy of the 3D box position regression. For the
angle prediction of the bounding box, we propose to use the
angle coding paradigm of the PSC. Experimental results also
prove that our improvement has significant improvement on
the model to predict the position, angle, and speed of the 3d
bounding boxes.
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