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Abstract

The advent of bird’s-eye view (BEV) representation has
witnessed significant advancements in camera-only 3D ob-
ject detection. However, existing approaches usually strug-
gle when applied to various corruptions that deviate from
the original training domain. To address these vulnerabil-
ities, we propose a novel framework, TSMA-BEV, which
combines a new image augmentation module AugFFT based
on fast fourier transformation (FFT) with a mix-sequence
augmentation strategy SeqMixAug to enhance the robust-
ness and adaptability of 3D object detection algorithms.
The proposed AugFFT, involves stochastic frequency cut-
offs and amplitude scaling to generate augmented images,
while SeqMixAug extends this augmentation to temporal
sequences, maintaining consistency across frames. This ap-
proach ensures improved performance stability in the face of
multiple corruptions. As demonstrated in our experiments,
the effectiveness and superiority of TSMA-BEV in handling
real-world corruptions are verified.

1. Introduction
Multi-camera 3D object detection involves the identifica-
tion and localization of objects within a 3D space, utilizing
data derived from multiple cameras [1]. In recent years,
significant advancements have been witnessed in the BEV
representation-based camera-only 3D detection methods,
showcasing remarkable breakthroughs across various chal-
lenging benchmarks [2–5]. In comparison to LiDAR-based
methods [6–8], camera-only approaches are increasingly
favored due to their cost-efficiency, computational effective-
ness, and the provision of detailed semantic information. The
BEV representation is pivotal in these advancements, which
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provides a unified learned representation of multi-view im-
ages, enables the interpretable fusion of information across
different sensors and temporal instances, and is well-aligned
with downstream applications. Consequently, BEV-based
3D perception approaches have attracted attention from both
academia and the industry.

Despite the promising performance of off-the-shelf
approaches on benchmarks such as nuScenes [9] and
Waymo [10], the stability of these algorithms trained on
single-domain data becomes a concern when confronted
with out-of-domain or unseen scenarios, which poses chal-
lenges for meeting the high demands of autonomous driving
in real-world scenarios [11, 12]. Robustness under common
corruptions such as sensor failure, different noises, and se-
vere weather conditions which usually occur in real driving
scenarios, are vital for real-world applications, including
autonomous driving [13], surveillance, and robotics [14].

To improve the robustness of the 3D perception algorithm
and alleviate the performance degradation on out-of-domain
data, various approaches have been proposed. Domain gen-
eralization (DG) addresses the specific camera attributes and
environmental variables over-fitting problem by decoupling
and eliminating the domain-specific factors, thus improv-
ing the general performance across various scenarios [15–
17] . Unsupervised domain adaption (UDA) eliminates do-
main shift by generating pseudo-labels or aligning latent
feature representations, which achieved considerable results
in Sim2Real tasks [18–20].

This paper presents a novel approach to 3D object de-
tection in the context of the 2024 RoboDrive Challenge
[23] (in conjunction with ICRA 2024). The competition
requires the development of an algorithm leveraging only
nuScenes [9] training data, yet effectively dealing with multi-
ple out-of-domain corruptions including severe weather con-
ditions, sensor failure, and different noises, etc. To improve
the robustness of the 3D object detection model under vari-
ous out-of-domain corruptions, we propose TSMA-BEV, a

1

https://robodrive-24.github.io/


Figure 1. Overall framework of our TSMA-BEV. Multi-view images are randomly augmented according to sequence splits and fed into an
image encoder to extract 2D image features. A view transformer [21] transforms 2D features to 3D space guided by estimated depth. To
attain temporal information, the volume features from current and previous frames are aligned and concatenated. Consequently, an BEV
encoder and CenterHead [22] predict object categories and locations.

novel framework consisting of an image augmentation mod-
ule based on FFT and a sequence consistent augmentation
strategy.
• AugFFT: For the augmentation module, we combine

stochastic frequency cut-off and amplitude scaling opera-
tions in the frequency domain based on FFT to generate
random augmented images.

• SeqMixAug: Different from common image augmenta-
tion in 3D object detection tasks, the sequence augmenta-
tion strategy we propose is not applied to a single frame,
but to a temporal sequence. The augmentation configura-
tion between adjacent frames is consistent, which avoids
the performance degradation caused by random augmenta-
tion settings between adjacent frames, especially for the
model leveraging long-term temporal information.
In Sec. 2, we introduce the FFT related applications in

computer vision and deep learning. In Sec. 3, we introduce
our technical approach in detail. In Sec. 4, we demonstrate
and verify the effectiveness and satisfactory performance of
the proposed framework under challenging out-of-domain
scenarios.

2. Related Works

Frequency Domain Analysis As a cornerstone in signal pro-
cessing, FFT pivotal across a broad spectrum of computer
vision applications, including image analysis and feature
extraction [24, 25]. In addition, frequency domain analysis
plays a vital role in adversarial attacks and data augmentation.
The AdvDrop attack introduces a novel approach by gener-
ating adversarial examples through the elimination of image

details in the frequency domain, proving challenging for
existing defensive frameworks to mitigate [26]. Amplitude-
phase recombination proposes to augment the original input
sample by recombining the phase spectrum of the sample
and the amplitude spectrum of the distracting image so as
to force the Convolutional Neural Networks (CNN) to pay
more attention to the structured information of the phase
component and remain robust to perturbation in amplitude,
preventing the CNN from local optimum [27]. Inspired by
the frequency adversarial attack and amplitude-phase recom-
bination augmentation, we propose a novel augmentation
module and adapt it to multi-camera 3D object detection
frameworks to further enhance the model robustness.

3. Approach

In this section, we will present our solution in detail with
the following aspects covered. Section 3.1 will elaborate on
the design of the model structure, pretraining, and scaling.
Section 3.2 will introduce the augmentation protocol and
chain employed in our study.

3.1. Model Structure

Giving a multi-camera temporal sequence images Xt =
{I1, I2, I3, · · · , IN}t, N is camera number and t is times-
tamp, the proposed TSMA-BEV framework aims to en-
hance the classification and bounding box regression ro-
bustness when facing out-of-domain scenarios. Inspired
by this benchmark [28], temporal fusion is crucial to the
robustness of camera-only 3D detection algorithms. Thus,
we adopt both low-resolution long-term and high-resolution
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Figure 2. Frequency domain augmentation operations. The orange
line is the transformed frequency distribution.

short-term stereo depth potential from SOLOFusion [21] to
make full use of temporal information.

Following the common pretrain protocols in recent BEV-
based works, we leverage VoVNet-99 as an image encoder.
We use publicly available pretrained weights* on DD3D
datasets. Additionally, with the same detection range, a
larger BEV grid size can represent more detailed scene
information, which is friendly to accurate multi-scale ob-
ject detection. Commonly used BEV feature size is Bt ∈
RB×C×H×W in which H and W are both 128, in this work
we adopt Bt ∈ RB×C×2H×2W , t is the timestamp.

3.2. Augmentation Module

Effective data augmentation is pivotal for enhancing the
generalizability of camera-only 3D object detection models.
Various strategies have been employed to boost model robust-
ness during training, including the innovative use of adversar-
ial losses [29]. While these methods tend to increase training
latency and GPU memory demands. Consequently, there is
a growing need for efficient augmentation techniques that
can integrate into existing training workflows, and achieve
a better balance between model performance and resource
consumption.

3.2.1 Augmentation Protocol

In this study, we deliberately omit any image corruption
operations included in the simulation methods that are lever-
aged to construct the evaluation dataset provided by the
competition. In particular, we remove all unit operations
from the original 18 corruption types in [28], only remain
equalize and solarize. Besides, to avoid any poten-
tial overlap with the evaluation set, we do not use any image
noising or image blurring operations.

*https://github.com/exiawsh/storage/releases/
download/v1.0/dd3d_det_final.pth

Figure 3. Overall pipeline of temporal sequence mix augmentation
(TSMA). The mixing ratio α represents the proportion of sequences
without AugFFT. α is the mix ratio.

In addition to these two operations, we propose a group
of image augmentation operations in the frequency domain,
as illustrated in Fig. 2. The operations a) and b) conduct am-
plitude clip based on randomly sampled scale σ. For upper
bound clip, Aclip = σupAmax, σup ∈ [0.7, 1]. While as for
lower bound clip, Aclip = 1×10−4(σlow+1)Amax, σlow ∈
[−0.3, 0.3].

The operations c) and d) conduct specific frequency band
amplitude scaling based on random sampled cut-off fre-
quency fcutoff ∈ [0.2fbd, 0.6fbd] and scale factor δ, in
which fbd is the maximize bandwidth. For low-frequency
amplitude scaling, A(f) = δlowAori(f), f ∈ (0, fcutoff ],
in which δlow ∈ [0.1, 0.5]. While for high frequency ampli-
tude scaling, A(f) = δhighAori(f), f ∈ (fcutoff ,+∞], in
which δhigh ∈ [1.6, 2.0].

Finally, as mentioned in Fig. 3, the augmented operations
we used consist of the following 6 operations equalize,
solarize, amp clip upper bound, amp
clip lower bound, amp scale low-freq,
amp scale high-freq. The randomly augmented
input images are shown in Fig. 4.

3.2.2 Augmentation Chain

NuScenes training data consists of 700 temporal se-
quences, which are usually split into Ntotal = 1400 mini-
sequences [21]. To better facilitate the temporal informa-
tion and avoid adjacent frame augmentation inconsistency,
we propose to apply the augmentation protocol to each
mini-sequence and update the mapping buffer after all mini-
sequences are trained. The buffer reset will introduce more
variety and avoid over-fitting on simple augmentation pat-
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Table 1. Comparison of top-perform solutions on Phase2 evaluation data. Our solution is marked with red. The baseline model is marked
with green. The best scores of each corruption type are highlighted in bold.
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DeepVision 52.1 39.5 65.3 36.7 49.8 62.3 51.8 53.5 49.1 41.8 37.1 45.3 67.5 71.2 52.9 59.6 56.7 56.9 40.8
Ponyville 50.2 43.1 62.7 37.5 46.6 60.9 49.2 58.4 46.5 44.7 18.8 44.8 66.7 70.6 42.4 56.0 50.8 56.8 47.5

CyberBEV 49.0 42.1 61.4 37.0 46.3 60.5 47.0 57.1 44.9 43.5 17.1 43.8 65.9 69.1 40.9 56.1 49.4 55.3 45.1
Safedrive-promax 48.1 39.2 59.8 37.4 39.8 62.5 47.6 59.0 43.9 41.4 14.3 45.4 63.3 68.5 42.3 53.3 49.5 56.2 42.2

drivingClass 47.8 39.1 60.0 28.1 48.7 56.3 44.1 52.5 46.9 38.9 34.9 44.3 62.9 63.8 50.9 51.6 52.0 56.3 33.4
BUPTMM 43.5 37.7 55.1 30.8 41.1 51.2 45.2 45.1 41.1 38.6 29.6 40.5 56.1 58.7 41.0 48.5 42.4 46.8 34.0

BEVFormer 22.8 28.5 34.9 21.4 10.5 28.0 15.7 28.7 21.1 19.2 6.4 35.0 26.9 20.6 12.3 24.9 25.4 30.3 21.3

Figure 4. Visualization of random generated augmented samples
based on TSMA-BEV.

terns. For each mini-sequence, the augmentation chain con-
sists of a maximum of 3 randomly sampled operations. Dif-
ferent from AugMix [30], we superimpose the randomly
sampled operations on the input multi-camera images. Fur-
thermore, as illustrated in Fig. 3, we only apply the above-
mentioned augmentation protocol to a certain proportion
(1− α) of the sequences and only apply common data aug-
mentation (such as flip, rotate, resize, and crop, etc.) to
the other parts. As discussed in Section. 4.4, the mixed
sequence augmentation protocol can avoid over-fitting on
either original data or augmented data.

4. Experiments

4.1. Datasets

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [23] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [9] and tested on the held-out competition
evaluation sets. The evaluation data was created following
RoboDepth [31–33], RoboBEV [14, 34, 35], and Robo3D
[36, 37]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR
failures. For more details, please refer to the corresponding
GitHub repositories.

4.2. Implementation Details

The TSMA-BEV framework is implemented using the
PyTorch framework [38] and is based on the MMDetec-
tion3D codebase [39]. All experiments are conducted on
8 NVIDIA A100 (80G) GPUs. The basic learning rate
is 2e-4 when training with 8 GPUs and the total batch
size is 64, actual learning rate is adapted to the actual
batch size since we use auto-scale learning policy, that is,
lract = (lrbasic/64) × (NGPU × Bmini). The optimizer
we use is AdamW [40]. As for our training pipeline, we
leverage a 3 stage training strategy:
• Stage 1: We first train the model for 2 epochs with only

short-term fusion in full precision and small batch size
to make the model converge faster and ensure training
stability;

• Stage 2: Then we further train the model for 4 epochs
without long-term history fusion in FP16 precision with
larger batch size;

• Stage 3: Finally, we train the model for extra 14 epochs
with both short-term and long-term history fusion in FP16
precision. The proposed TSMA strategy is also applied.

Note that we leverage grad clip and loss scaling with default
scale factor 128 when using FP16 precision training.
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Table 2. Ablation results of the proposed AugFFT and SeqMixAug on Phase2 evaluation data. 2× means using large BEV grid size as
mentioned in Section. 3.1.

Method Resolution NDS↑ mAP↑ mATE↓ mASE ↓ mAOE↓ mAVE↓ mAAE↓
Base(2×) 1408× 512 0.5027 0.4546 0.5412 0.4054 0.4808 0.4667 0.3524

Base(2×)+AugFFT 1408× 512 0.5121 0.4736 0.5444 0.3905 0.4804 0.4865 0.3454
Base(2×)+AugFFT+SeqMixAug 1408× 512 0.5211 0.4715 0.5493 0.3840 0.4066 0.4700 0.3370

Table 3. Ablation studies of mixing ratio α on Phase1 evaluation
data of the competition. Models are trained under an image resolu-
tion of 320× 800.

Mixing Ratio α 0.5 0.2 0

NDS↑ 0.5676 0.5785 0.5611

4.3. Comparative Study

As shown in Table. 1, we compared our solution with other
approaches on the Phase2 evaluation data of this competi-
tion. Our solution outperforms the other methods by a large
margin across many corruption types.

4.4. Ablation Study

As shown in Tab. 3, we also conduct ablation studies on the
mix ratio α and find the optimal choice α = 0.8, which is
used in our best model. To further validate the effectiveness
of the proposed data augmentation module, we assess the
impact of the simple AugFFT module, the combination of
AugFFT and SeqMixAug module, as shown in Tab. 2. The
proposed data augmentation and sequence consistent aug-
mentation strategy play an important role in improving the
model performance under out-of-domain corruptions. Due
to the long-term history fusion and sequence consistency
augmentation design, our model performs better in mean
Average Orientation Error (AOE), mean Average Velocity
Error (AVE), and mean average attribute error (AAE).

5. Conclusion
This study introduces TSMA-BEV, a novel framework for
3D object detection tailored to the RoboDrive competition
setting that challenges algorithms with out-of-domain sce-
narios such as severe weather and sensor failures. The
proposed approach utilizes the nuScenes training dataset,
enhances robustness through two novel augmentation strate-
gies: AugFFT and SeqMixAug. AugFFT applies stochastic
frequency cut-offs and amplitude scaling in the frequency
domain to produce varied augmented images. While Se-
qMixAug extends AugFFT to temporal sequences, ensuring
consistent augmentation settings across frames to facilitate
the ability of the model to utilize temporal information. Ex-
perimental results confirm the efficacy of TSMA-BEV in

handling out-of-domain conditions, marking a promising
advancement in the robustness of 3D object detection algo-
rithms.
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