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Abstract

In the 2024 RoboDrive Challenge, specifically Track 1:
Robust BEV Detection, the ”Multi-View Enhancer (MVE)”
method leverages innovative approaches to significantly im-
prove the robustness of 3D object detection from multiple
camera perspectives. Building on the foundation of the
RayDN architecture, MVE integrates a modified backbone
using EVA ViT-Large, pre-trained on ImageNet to ensure
deep and robust feature extraction. This method is further
enhanced by a strategic combination of Augmix and Deep-
Aug data augmentation techniques, meticulously tailored to
avoid overlapping corruptions with those encountered in the
challenge test sets. By adopting depth-aware hard negative
sampling, MVE not only refines the detection capabilities
but also ensures the model’s adaptability to varied and un-
foreseen environmental conditions. The training process is
systematically structured to evolve from clean, unaltered
datasets to increasingly complex scenarios, ensuring that
each step contributes to building a more resilient detection
system. This method has shown promising results in prelimi-
nary tests, highlighting its potential as a robust solution for
BEV detection challenges in autonomous driving applica-
tions.

1. Introduction

The advent of autonomous driving technologies has cat-
alyzed an unprecedented focus on the development of robust
and reliable detection systems capable of accurately inter-
preting and navigating complex environments [1, 2]. Among
the various challenges, Bird’s Eye View (BEV) detection
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remains pivotal, offering a comprehensive perspective that is
critical for the safe operation of autonomous vehicles. The
2024 RoboDrive Challenge [3], particularly Track 1: Robust
BEV Detection, presents an opportunity to address this chal-
lenge by leveraging advanced computer vision techniques.
Our solution, titled ”Multi-View Enhancer (MVE)”, aims to
significantly enhance the accuracy and robustness of BEV
detection across multiple camera perspectives.

BEV detection systems are essential for understanding the
vehicle’s surrounding environment from a top-down view, in-
tegrating data from multiple sensors to create a consolidated
and actionable understanding of road conditions, obstacles,
and navigational cues [4]. However, the dynamic nature
of driving environments, coupled with the inherent limita-
tions of current detection technologies, poses significant
challenges. These include the variability of environmental
conditions, the presence of occlusions, and the need for high
precision in object detection and depth estimation from 2D
images.

Our approach is designed to overcome these challenges
by integrating a novel pipeline for camera-only 3D object
detection, a sophisticated feature extraction backbone, and
innovative data augmentation techniques. The Multi-View
Enhancer (MVE) employs a combination of state-of-the-art
technologies and methodologies to ensure high performance
and adaptability in real-world driving scenarios, setting a
new standard for BEV detection systems in autonomous
vehicles.

2. Related work
2.1. 3D Object Detection

The field of 3D object detection has evolved significantly
with advancements in deep learning and computer vision.
Early efforts predominantly utilized geometric properties
and stereoscopic vision to estimate depth and object posi-
tioning [5]. With the advent of deep convolutional neural net-

1

https://robodrive-24.github.io/


Clean Image

Augmix

DeepAug

Data Augment

RayDN

EVA02-ViT

Loss

Loss function

Train Model
Figure 1. Pipeline of MVE.

works, researchers have shifted towards more sophisticated
methods that leverage large volumes of data for training more
accurate models. Notable developments include the use of
point clouds generated by LiDAR sensors [6–8], as seen in
models like PointNet and PointRCNN, which have set bench-
marks for accuracy in 3D object detection [9, 10]. More
recently, methods that infer 3D information from 2D im-
ages have gained prominence due to their cost-effectiveness
and ease of integration with existing camera-based systems,
such as MonoDIS and Pseudo-LiDAR approaches [11, 12].
More advanced methods have been developed for multi-view
camera 3D object detection in BEV space, such as BEV-
Former [13], BEVDepth [14], and Sparse4D [15]. These
methods have even achieved performance comparable to
LiDAR-based detection [16], marking significant progress
[17].

2.2. Robustness of Visual Systems

Recent research has extensively explored adversarial robust-
ness, focusing on how models can withstand malicious inputs
designed to induce errors. Studies by Madry et al. and Good-
fellow et al. have laid foundational work in understanding
and defending against adversarial examples, highlighting
techniques like adversarial training as effective countermea-
sures and son on [18–20]. On the other hand, natural robust-
ness pertains to a model’s ability to perform reliably across a
range of environmental conditions and sensor noises, a vital
attribute for systems deployed in variable real-world settings.
Efforts to enhance natural robustness often involve data aug-
mentation techniques and robust training frameworks that
mimic real-world disturbances. Research in this area has
been propelled by benchmarks like ImageNet-C, which tests
models against common visual corruptions and has spurred
the development of more resilient architectures [21–23].

3. Approach

Our approach for the RoboDrive Challenge, titled ”Multi-
View Enhancer (MVE)”, harnesses advanced computational
techniques and innovative methodologies to significantly bol-
ster the robustness and accuracy of Bird’s Eye View (BEV)
detection across multiple camera perspectives. By integrat-
ing sophisticated systems for data processing, augmentation,
and adaptive training, MVE is designed to address the mul-
tifaceted challenges associated with 3D object detection in
dynamic driving environments. The pipeline of MVE is
illustrated in Fig. 1.

3.1. Pipeline

MVE approach follows a novel pipeline RayDN [24] for
camera-only 3D object detection, the enhancement specif-
ically developed for multi-view 3D object detection. This
method strategically mitigates the common issues of redun-
dant and incorrect detections, which are prevalent due to the
inherent difficulties in depth estimation from 2D images. By
implementing depth-aware hard negative sampling directly
along camera rays, Ray Denoising creates hard negative ex-
amples that are visually indistinguishable from true positives.
These challenging examples force the model to refine its abil-
ity to discern depth-related features, significantly improving
its capability to distinguish between true and false positives.
Ray Denoising functions as a plug-and-play module, easily
integrating with any DETR-style multi-view 3D detector. It
offers a substantial boost in detection accuracy, demonstrat-
ing an improvement in mean Average Precision (mAP) over
existing state-of-the-art methods like StreamPETR on the
nuScenes dataset [1], without increasing training computa-
tional overhead or affecting inference speeds
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Figure 2. Visualization of Augmix-Enhanced Data.

Figure 3. Visualization of DeepAug-Enhanced Data.

3.2. Backbone

For superior feature extraction, MVE employs the EVA ViT-
Large, a next-generation Transformer-based model that has

been pre-trained on the extensive ImageNet dataset. The
EVA-02 variant of this backbone utilizes an updated plain
Transformer architecture and has been extensively trained
to reconstruct robust, language-aligned vision features via
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masked image modeling. This allows the EVA ViT-Large to
excel in extracting high-quality features that are crucial for
precise object detection, even under variable environmental
conditions. With its exceptional capability to maintain high
performance using significantly fewer parameters, the EVA-
02 backbone ensures that our model is not only effective but
also efficient, making it ideal for real-time applications in
autonomous driving.

3.3. Data Augmentation

To ensure that MVE performs reliably across varied and un-
foreseen operational conditions, our approach incorporates
two advanced data augmentation strategies: Augmix and
DeepAug. Visualization of enhanced data can be seen in
Fig. 2 and Fig. 3.

Augmix is designed to enhance model robustness by ap-
plying a combination of simple image processing techniques
such as pixel shuffle, random hue, and random saturation in
a manner that preserves the semantic content of the images
while introducing realistic, unseen variations. This method
significantly improves the model’s uncertainty estimates and
resilience against data corruptions not present during train-
ing, effectively bridging the gap between clean data and
real-world performance.

The Augmix method uses a combination of image pro-
cessing operations and mixes the resulting images using
a convex combination, maintaining the semantic integrity
of the images while introducing diverse variations. Each
augmentation chain consists of a sequence of operations
applied to the image. Let x be the original image, and
O1,O2, . . . ,On be the image processing operations (like
pixel shuffle, random hue, and random saturation). An aug-
mentation chain for a single image can be expressed as:

x′ = On(. . . (O2(O1(x))) . . .)

The outputs of different augmentation chains are mixed
together using element-wise convex combinations. If
x′
1, x

′
2, . . . , x

′
k are the outputs from k different augmenta-

tion chains, and w is the vector of mixing weights sampled
from a Dirichlet distribution Dir(α, . . . , α), then the mixed
image x̃ can be represented as:

x̃ = w1 · x′
1 + w2 · x′

2 + · · ·+ wk · x′
k

where w1, w2, . . . , wk are the components of w.
Finally, the mixed image x̃ is combined with the original

image x using a second random convex combination sampled
from a Beta distribution Beta(α, α). Let β be the mixing
coefficient from the Beta distribution, and the final image y
is given by:

y = β · x+ (1− β) · x̃

The full Augmix process, combining several sources of
randomness—choice of operations, severity, lengths of aug-

mentation chains, and mixing weights—helps ensure ro-
bustness and generalization, preparing the model to handle
unseen variations and corruptions effectively.

DeepAug, on the other hand, represents a more radical
departure from traditional data augmentation techniques. In-
stead of applying transformations directly to the raw images,
DeepAug manipulates the internal representations within
deep neural networks. By passing clean images through
image-to-image networks like CAE and EDSR and introduc-
ing random perturbations at various layers, DeepAug gener-
ates images that maintain semantic integrity but differ sig-
nificantly in appearance from their original versions. These
perturbations include operations such as zeroing, negating,
and convolving, which introduce a rich tapestry of visual
variations, thereby training the model to recognize and adapt
to a broader range of visual data.

This dual approach of Augmix and DeepAug not only
prepares the model to handle diverse environmental changes
but also ensures that it can adapt to potential shifts in input
data distributions encountered in real deployment scenarios.

3.4. Training Strategy

The training regimen of MVE is meticulously planned to
maximize the model’s exposure to a wide range of scenar-
ios, starting with training on clean, unaltered data from the
nuScenes dataset. This foundational phase establishes base-
line accuracy and robustness. Subsequent phases introduce
complexity incrementally, first integrating data enhanced
with Augmix, followed by data simultaneously enhanced by
both Augmix and DeepAug. This staged training strategy
not only helps in layering the robustness attributes of the
model but also ensures that the system develops the ability to
generalize well across different types of environmental and
operational conditions, ultimately leading to a more resilient
and dependable detection system.

By deploying these strategic implementations, MVE sets
a new benchmark for robustness and accuracy in multi-view
BEV detection, providing a comprehensive, adaptable solu-
tion for the evolving demands of autonomous driving tech-
nology.

4. Experiments
4.1. Datasets

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [3] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [1] and tested on the held-out competition
evaluation sets. The evaluation data was created follow-
ing RoboDepth [25–27], RoboBEV [4, 28, 29], and Robo3D
[22, 30]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR
failures. For more details, please refer to the corresponding
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Table 1. NDS of corruption categories on Robodrive Track1 Phase2 test dataset. (Part 1)

Corruptions Bright Dark Fog Frost Snow Contrast Defocus Blur Glass Blur Motion Blur Zoom Blur

RayDN 0.354 0.528 0.334 0.256 0.616 0.336 0.493 0.451 0.380 0.119
MVE (Augmix) 0.421 0.627 0.336 0.439 0.648 0.480 0.587 0.434 0.413 0.156
MVE (Augmix+DeepAug) 0.431 0.627 0.375 0.466 0.609 0.492 0.584 0.465 0.447 0.188

Table 2. NDS of corruption categories on Robodrive Track1 Phase2 test dataset. (Part 2)

Corruptions Elastic Transform Color Quant Gaussian Noise Impluse Noise Shot Noise ISO Noise Pixelate JPEG Average

RayDN 0.470 0.487 0.588 0.363 0.483 0.482 0.559 0.429 0.429
MVE (Augmix) 0.434 0.661 0.691 0.468 0.532 0.511 0.566 0.382 0.488
MVE (Augmix+DeepAug) 0.448 0.667 0.706 0.424 0.560 0.508 0.568 0.475 0.502

Table 3. Clean performance on nuScenes dataset validation split.

Models NDS mAP mATE mASE mAOE mAVE mAAE

BEVFormer (Baseline) 0.517 0.415 0.672 0.274 0.369 0.397 0.198
RayDN 0.624 0.541 0.518 0.252 0.274 0.230 0.195
MVE (Augmix) 0.623 0.541 0.509 0.253 0.268 0.248 0.194
MVE (Augmix+DeepAug) 0.619 0.536 0.506 0.256 0.294 0.248 0.187

GitHub repositories.

4.2. Experimental Setups

Our proposed approach was implemented using the PyTorch
framework [31] and was based on the MMDetection3D code-
base [32]. The Multi-View Enhancer (MVE) model was
trained using eight NVIDIA GeForce RTX 4090 GPUs. Dur-
ing the training process, only images from the training split
of the nuScenes dataset were utilized. The training regi-
men was structured, to begin with 24 epochs on the clean
nuScenes train split, followed by 16 epochs on Augmix-
enhanced data, and concluded with 16 epochs using a com-
bination of both Augmix and DeepAug enhanced data.

4.3. Implementation Details

Augmix. The initial implementation of Augmix overlapped
significantly with the corruptions used in the 2024 Robo-
Drive competition. Due to competition rules that prohibit
the use of identical corruptions during training, we selected
pixel shuffle, random hue, and random saturation as augmen-
tation methods that differ from the competition’s corruptions
to simulate data degradation and enhance the generalization
capabilities of the detection model.
DeepAug. The DeepAug enhancement includes augmented
data processed by CAE and EDSR models. This approach
is implemented during the image loading phase, either on
the fly or through pre-generated augmented data to optimize
computational efficiency. In practice, augmented data is
pre-generated, and during model training, images are loaded
based on a random probability rd (threshold t experimentally

set to 0.6). If rd exceeds t, data processed by EDSR is used;
otherwise, CAE-processed data is employed. Additionally,
to maintain consistency in detection outcomes, operations
such as horizontal and vertical flips, which are typically part
of DeepAug, were excluded.

4.4. Comparative Study

RoboDrive Track 1: Robust BEV Detection competition
involves 18 types of corruptions designed to evaluate the
algorithm’s recovery capabilities against various environ-
mental and sensor-based damages. Tab. 1 and Tab. 2 display
the results of our baseline RayDN and the MVE method on
the 18 corruption types of the NDS metrics. It was observed
that post-Augmix processing, there was a performance im-
provement on most corruption types, with gains of 0.182 and
0.173 NDS on Frost and Color Quant respectively, achieving
an average NDS of 0.488. However, slight decreases were
noted on corruptions such as Glass Blur, Elastic Transform,
and JPEG. Following the addition of DeepAug enhance-
ments, overall robustness further improved, with the average
NDS reaching 0.502. This indicates that both Augmix and
DeepAug enhancements contribute to improved NDS across
the dataset.

4.5. Results on the nuScenes Dataset

Furthermore, the performance of our methods on the
nuScenes validation split clean data is evaluated, as shown
in Table Tab. 3. Compared to BEVFormer, RayDN showed
an NDS improvement of 0.1068. Selecting RayDN as the
pipeline laid a solid foundation for our approach. The MVE
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method, after augmentation with Augmix data, retained al-
most complete performance on clean data. After an addi-
tional 16 epochs of training on DeepAug data, the NDS on
clean data slightly decreased to 0.619. However, at this point,
the MVE method achieved the best robustness NDS values,
illustrating a trade-off between clean data NDS performance
and robust data NDS performance. This also highlights that
MVE’s data augmentation techniques do not overly impact
performance on clean data, preserving the method’s detec-
tion capabilities on uncorrupted datasets.

5. Conclusion
In this study, we introduced the Multi-View Enhancer
(MVE), an advanced approach designed to improve the ro-
bustness and accuracy of BEV detection in autonomous
vehicles. By integrating the Ray Denoising technique with
the EVA ViT-Large backbone and innovative data augmenta-
tion methods like Augmix and DeepAug, MVE significantly
enhances the detection capabilities under various environ-
mental conditions. Our results demonstrated marked im-
provements in handling diverse types of data corruptions
in the RoboDrive Challenge, maintaining high performance
on clean data from the nuScenes dataset. This work lays a
solid foundation for further research into reliable and effi-
cient BEV detection systems for autonomous driving, aiming
to balance high performance with robustness in real-world
scenarios.
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