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Abstract

Although existing map segmentation methods have
achieved high performance, they struggle to handle chal-
lenges introduced by real-world corruption. The CrazyFri-
day team focuses on the scaling up framework to improve
the generalized ability of robustness, and developed an en-
hanced MultiViewRobust framework to address the challenge
of robust map segmentation, leveraging multi-view architec-
ture and advanced temporal information integration. We
achieved second place in the track-2 of the RoboDrive Chal-
lenge.

1. Introduction

Map segmentation is essential for autonomous driving tasks
such as HD map construction, which is crucial for driving
safety [1–10]. However, various challenging scenes can af-
fect the accuracy of map segmentation. These scenes are
rare in clean datasets but often occur in the real world, lead-
ing to the performance dropping of some high-performance
approaches [11]. These approaches tend to over-fit certain
datasets, which may lead to poor performance of robustness
[12]. Fortunately, the RoboDrive competition [13] provides
datasets and toolkits for training and testing the robustness
of frameworks.

To address these problems, we initially conducted experi-
ments on various recent high-performance models [14–17]
to compare their abilities. Temporal and multi-view fusion
strategy is widely implemented in these models to achieve
robust map segmentation against corruptions [18–20]. There-
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fore, we selected BEVerse [14] as the baseline.
Next, we attempted to address factors that may affect

performance or robustness under corrupted images. The
module of the branch for a specific task may contribute little
to robustness. These specific task branches mainly focus
on the specific task of refinement, receiving features from
the backbone. The backbone processes the image primarily
to reconstruct the features under corruption. Therefore, the
robustness of the framework may be attributed to the well-
informed backbone [21–24] for the generalized ability of
robust image feature extraction.

Finally, we proposed an enhanced framework named
MultiViewRobust, which uses enhanced backbone inte-
gration, temporal and multi-view fusion, advanced post-
processing techniques, and some training strategies for map
segmentation under corrupted images. The MultiViewRo-
bust achieved second place in the track-2 of the RoboDrive
Challenge, demonstrating the effectiveness of our frame-
work.

2. Approach
Given a surrounding image I , our framework first extracts
features from the image. To enhance the robustness of fea-
ture extraction, we utilize the large image backbone of Swin-
L [24] or EVA-02 [22]. Following BEVerse [14], the multi-
level features of the backbone are used to enable efficient
fusion.

The inclusion of temporal information can help alleviate
corruption []. Therefore, we employ image-to-BEV trans-
formation [25] to convert perspective image features into a
dense point cloud with various depths and camera intrinsic
and extrinsic. For each timestamp, the view transformer
utilizes multi-view features to cover the entire surroundings.
Additionally, pillar pooling [26] is applied to these point
clouds to create the BEV feature representation. These ef-
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fectively handle temporal discrepancies and leverage spatial
context, enhancing map segmentation accuracy.

After the view transformation, in line with FIERY [27],
we first align the BEV features from past timestamps to
the present reference frame using known ego motions.
The aligned 4D features are then processed with a spatio-
temporal BEV encoder to further extract spatial and temporal
information. These refine the map segmentation outputs, en-
suring high fidelity in the representation of dynamic and
complex urban environments.

Finally, map decoders are employed for semantic map
construction, utilizing a simple MLP.

3. Experiments
3.1. Datasets

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [13] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [1] and tested on the held-out competition
evaluation sets. The evaluation data was created following
RoboDepth [28–30], RoboBEV [11, 31, 32], and Robo3D
[12, 33]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR fail-
ures.

3.2. Implementation Details

Apart from the basic setup of BEVerse [14], we select EVA-
02-L [22] as the backbone pretrained on ImageNet-21K [34]
for training our framework. The pretrained weights can be
downloaded from this url. The input image size is 800×1600
pixels. We use AdamW [35] with a learning rate of 1e-5
and weight decay of 1e-2. The batch size is set to 1 during
training. The entire model is trained for approximately 12
epochs on a server with 8 NVIDIA A100 GPUs.

3.3. Comparative Study

As shown in Tab. 1, we conducted a comparative analysis
of different backbones, including Swin-S [23], Swin-L [23],
and EVA-02-L [22]. Scaling up vision ability demonstrates
the attribution to improved performance by increasing the
number of parameters and data. Larger parameters and a
pretrained dataset for the backbone may imply improving
robustness of feature extraction under various corruptions.

3.4. Ablation Study

As shown in Fig. 1, we also investigated the effect of train-
ing epochs. Extending it leads to a drop in mIOU. We hy-
pothesize that the model may overfit the dataset due to the
optimizer focusing on a specific refinement strategy. This
refinement may affect the robustness under varied and chal-
lenging conditions, while improving performance on specific
datasets.

Backbone Dataset Parameters mIOU

Swin-S [23] ImageNet-1K [34] 50M 15.67
Swin-L [23] ImageNet-21K [34] 197M 17.51
EVA-02-L [22] ImageNet-21K [34] 304M 34.54

Table 1. Results of evaluating different pretrained backbones on
the test servers provided by RoboDrive.
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Figure 1. Illustration of the mIOU corresponding to the training
epochs.

4. Conclusion
In this work, based on the high-performance framework we
proposed an enhanced framework named MultiViewRobust,
which uses enhanced backbone integration, temporal and
multi-view fusion, and advanced post-processing techniques
for map segmentation. the CrazyFriday team focuses on
scaling up and the training strategy to improve the robustness
under various corruption scenarios. We achieved second-
place performance in the second track of the RoboDrive
Challenge.
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