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Abstract

This technical report summarizes the winning solution
for the track 2 (map segmentation) of the RoboDrive Chal-
lenge, which is affiliated with the 41st IEEE Conference on
Robotics and Automation (ICRA 2024). Our proposed solu-
tion builds upon BEVerse, a camera-based baseline for the
map segmentation task. We further study novel designs and
optimization tailored to the robust map segmentation task,
including perspective-view map loss, data augmentations,
model scaling up, and effective post-processing strategies.
These designs and optimization result in a state-of-the-art
mloU score of 48.75% on the corrupted nuScenes test set,
ranking the Ist place in the challenge track 2.

1. Introduction

Sensing the map of the driving scene through a multi-view
camera on the vehicle is a cost-effective and efficient solution
in autonomous driving technology [1-4]. Map segmentation
perception is important for path planning of autonomous
driving systems by providing information about the bound-
aries of the road [5—7]. Camera-based solutions may have
very fragile prediction results in case of bad weather, sensor
noise, and other corruptions [8—11]. Therefore, the ability to
perform accurate prediction tasks despite various damaged
sensor images can greatly increase the safety of autonomous
driving systems.

The track 2 of the 2024 RoboDrive Challenge [12] re-
quires participants to develop map segmentation algorithms
that solely utilize corrupted camera input during inference.
In addition, it is not allowed to use corruption augmentation
during training, which targets testing the Out-of-Distribution
(OoD) robustness of the developed models. The impact of
this challenge is significant because it provides a common
corruption benchmark for autonomous driving perception in
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real-world corruption scenarios.

In this competition, we emphasize three aspects of meth-
ods, including data augmentation, model scale, and temporal
post-process. This comes mainly from several motivations.
First, limited training data restricts the model’s generaliza-
tion performance in corrupted scenarios. Designing an image
augmentation strategy that applies to as many scenarios as
possible can mitigate overfitting while also improving the
model’s performance under corrupted images [8, 13]. How-
ever, existing image augmentations mainly interfere with
pixels through some predefined pixel values, such as zeros
in Cutout [14] or Gaussian noise. In this technical report,
we adopt a simple and effective data enhancement method
that randomly shuffles a certain percentage of pixels, which
makes the image enhancement more relevant to the input
image rather than artificially defined. Besides, we have also
explored vision backbones with different sizes under cor-
rupted scenes. Last, we ensemble the predicted results at
adjacent frames since map elements do not move with the
vehicle. Predictions closer to the camera generally have
more reliable robustness. As will be described in this re-
port, strong data augmentation and post-processing strategy
became the key factors for our success in this challenge.

2. Approach

In this section, we will present our solution in detail with
the following aspects covered. Section 2.1 will elaborate on
our model modification. Section 2.2 will discuss the data
augmentation design. Finally, Section 2.3 will outline our
post-processing strategies.

2.1. Model modification

Since BEVerse [1] is a multi-task visual perception algo-
rithmic framework that uses shared BEV features to decode
three tasks (3D object detection, map segmentation and mo-
tion prediction). To mitigate the performance loss due to
shared parameters in multitasking, we retain the detection
header for only one task, map segmentation. At the same
time, the grid-aware range of BEV is adjusted to the range
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Figure 1. Illustration of the overall pipeline in our proposed robust map segmentation solution.

required by the map task. We adjusted the depth classifica-
tion range of the LSS module [15] to 1 to 35 meters at 0.5m
intervals.

BEVerse uses LSS as the perspective transformation
module, and we adopt the module of depth supervision in
BEVDepth into the baseline model. Camera parameters and
image features are passed into a depth estimation network,
and the Lidar point cloud is converted into depth information
in the image to supervise the depth network. A cross-entropy
loss function is used for the depth estimation loss Lgeptp-

In order to guide the image encoder to learn rich map
features, we project the map elements onto the camera plane
and employ two convolutional layers as the segmentation
head for the perspective view (PV) to predict the three types
of map foregrounds. Dice loss and Cross-entropy loss are
adopted as the auxiliary loss function:

Lpy = Lyee(Mpy, Mpy) + Laice(Mpyv, Mpy). (1)

M py is the predicted PV mask and Mpy is the ground
truth. Ly.. represents the binary cross-entropy loss and
L gice denotes dice loss [16].

Following BEVerse, the Cross-entropy loss function is
employed as the loss for the map segmentation header. The
overall loss of our solution is formulated as follows:

L= /\1£depth + >\2['PV + /\3£map (2)

where L,,qp is the map segmentation loss, and the weighted
factors {1, A2, A3} are set to {1, 1, 10} respectively.

2.2. Data augmentation

In this section, we present a simple yet effective data augmen-
tation called PixelShuffle augmentation, which randomly
shuffles a certain percentage of pixels of the original image.
We first sample a ratio value from a specific range (0.1 ~
0.4). Then, using this ratio, a portion of the pixels in the im-
age are randomly selected and spatially shuffled. The larger
the proportion of random samples, the more pronounced the
augmentation of the image. Figure 2 shows some augmented
results at different ratios. As we can see in Figure 2, such
an augmentation leads to better consistency between the
processed image and the original one.

ratio=0.1 ratio=0.2

ratio=0.3 ratio=0.4

Figure 2. Examples of augmented images by PixelShuffle at differ-
ent shuffle ratios.

In addition to PixelShuffle, several image-level data aug-
mentation methods are employed, including HSV augmenta-
tion, Cutout [14], and Dropout. For each data augmentation,
the final augmented image is obtained through AugMix,
which blends the same image with different data augmen-
tations. Following AugMix [17], a random selection of up
to 3 augmentation methods is applied to the original im-
age sequentially. Subsequently, the process was repeated
three times to weight the three augmented images with co-
efficients sampled from the Dirichlet distribution. Finally,
the weighted image is added to the original image using a
parameter m controlled by the beta distribution:

Towg=m x I+ (1 —=m) X Iz 3)

where I, I, and I,,4 denote the original, weighted and
augmented image, m € Beta(2, 6).

Multi-scale training is also adopted during training. We
randomly resize the original images with a ratio uniformly
sampled between 0.89 and 1.0. After that, the images are
resized to a fixed size of 512 x 1408 pixels. Finally, all
images are randomly flipped with a possibility of 0.5.



Table 1. Map segmentation performance of different settings on the RoboDrive track 2 test set.
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Method |5 8 8 & 8 © € & & = £ 2 & € &a € 2 {8 |muU
BEVerse 254 - 59 27.0 284 47.1 25.8 129 7.8 31.0 2.8 14.8 314 248 409 4.1 22 19.3| 204
Single frame |33.4 - 9.1 35.4 325 44.6 28.0 6.3 16.8 30.8 12.9 27.6 29.0 17.2 393 11.5 9.5 19.3| 23.5
+Depth 32.6 - 125 350 324 454 29.7 11.3 194 27.7 15.2 28.0 30.8 19.6 39.9 149 16.3 20.6| 25.0
+HSV 50.3 - 26.0 41.3 36.1 459 31.0 8.6 26.7 29.3 19.2 35.0 34.3 19.6 38.2 17.6 269 159| 29.1
+PixelShuffle |33.8 - 11.9 45.3 38.8 46.1 27.4 13.4 33.6 37.9 24.8 394 43.0 29.7 44.0 24.3 30.2 21.8| 31.6
+AugMix [47.9 - 28.8 54.8 39.0 45.5 29.8 17.9 44.0 37.0 34.6 46.8 49.6 25.8 444 293 314 21.4| 36.3
+PV seg 513 - 277 54.0 41.4 45.3 29.9 16.0 38.4 38.8 33.9 43.5 46.5 31.1 44.8 29.5 40.0 21.6| 36.7
+Swin Large [48.5 - 45.3 58.5 48.8 459 31.0 19.2 47.5 38.2 37.6 50.2 51.0 35.2 44.3 31.8 45.8 20.7| 40.9
+ Scale TTA [48.9 - 45.9 59.3 49.7 46.5 31.9 18.8 48.4 38.3 38.7 50.8 49.6 35.5 44.8 31.8 47.1 21.2| 41.3
+ Temporal [54.6 - 54.6 71.1 64.8 52.1 28.6 23.1 58.5 51.2 46.1 64.2 54.9 44.7 55.2 37.2 54.5 21.8| 48.8

2.3. Post-processing

We believe that post-processing techniques suitable for map
segmentation can greatly enhance the results of map segmen-
tation. We perform post-processing in spatial and temporal
dimensions respectively.

2.3.1 Test-time augmentation

In the spatial dimension, multi-scale test is adopted during
inference. The images are scaled several times at 0.82, 0.9,
and 0.99 respectively. Then, we average the obtained map
segmentation scores to get the final map segmentation result.

2.3.2 Temporal ensemble

The ensemble of temporal information can significantly en-
hance the robustness of the model. While BEVerse [1] is
capable of fusing historical BEV features to facilitate map
segmentation for the current frame, our findings indicate
that this approach does not lead to an improvement in the
model’s robustness. Even the robustness of the model trained
and evaluated on a single frame is higher than that observed
when multiple frames are used. Consequently, in our solu-
tion, we train and test the model on a single frame only. The
ensemble of temporal information is performed offline. Em-
pirically, the accuracy of results closer to the vehicle tends
to be higher. Therefore, we transform the results from both
previous and future frames to the current frame. For static
map grids, we leverage the predicted grids that are close to
the ego car in multiple frames to replace the grids co-located
in the current frame.

3. Experiments

In this section, we will present our experiments in detail
with the following aspects. Section 3.1 provides details
on the use of training and evaluation datasets. Section 3.2
elaborates on our experimental setups. Section 3.3 outlines
our implementation details. Finally, Section 3.4 will discuss
the comparative study and ablation study of our experiments.

3.1. Datasets

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [12] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [18] and tested on the held-out competition
evaluation sets. The evaluation data was created following
RoboDepth [13, 19, 20], RoboBEV [8, 21, 22], and Robo3D
[9, 23]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR
failures. For more details, please refer to the corresponding
GitHub repositories.

3.2. Experimental Setups

The model is implemented based on the MMDetection3D
codebase [24]. We use a batch size of 8 on 8§ NVIDIA
4090 GPUs, AdamW optimizer with a peak learning rate
of 2.5 x 107* and a weigh decay [25] of 0.01. We train
our models around 20 epochs for map segmentation tasks.
Cyclic learning rate schedule [26] is adopted during training.
For the temporal ensemble window, we use 20 historical
frames and 20 future frames. We only train the single-frame
version of BEVerse [1], which is much more efficient and
robust.



3.3. Implementation Details

The image scale is 512 x 1408 pixels. The image features
from the backbone are downsampled with a stride of 16. We
use commonly used data augmentation strategies, including
flip and rotation on image space. The depth net predicts 68
discrete depth categories covering the depth from 1 m to 35
m. BEV features are transformed according to a grid size
of 200 x 400 and a resolution of 0.15 meters. The vertical
range in the LSS module is restricted from -1.5 m to 1.5 m.

3.4. Comparative Study

In our exploration, we first verify the effects of different
models at a smaller scale and with fewer training epochs.
In this setting, the image backbone is Swin-small [27] pre-
trained on ImageNet [28], and the input scale is 512 x 1408
pixels. We list the milestones of our exploration in Table
1. BEVerse is our vanilla baseline. This baseline is trained
with only 10 epochs on the nuScenes training set. We train a
single-frame version of the baseline and find that the single-
frame version shows better robustness with an improvement
of 3.12 % mloU. After incorporating depth supervision fol-
lowing BEVDepth, the robustness is further improved. Then
we add HSV enhancement and PixelShuffle enhancement
separately, and we get a huge improvement in robustness
compared to that without augmentations. We further adopt
AugMix to fuse all the augmentation operations, including
HSV, PixelShuffle, Cutout, and Dropout. On top of that,
we leverage perspective-view segmentation for the back-
bone features with an auxiliary loss. After verifying these
effects of different models, we switch to a larger image back-
bone Swin-Large, and the training schedule is extended to
20 epochs. Finally, we adopt the test-time augmentation
at different scales and ensemble the results from different
timesteps.

Figure 3 and Figure 4 report some challenging examples
from the RoboDrive Challenge. Even for severely corrupted
images, our approach could predict accurate and consistent
map segmentations, which demonstrates the strong robust-
ness of our solution.

4. Conclusion

In this report, we describe our winning solution for the Ro-
boDrive Challenge map segmentation in conjunction with
ICRA 2024. Our solution demonstrates excellent map seg-
mentation results. It also shows the effectiveness of data
augmentations and temporal ensemble in the robustness of
map segmentation.
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Figure 3. Qualitative results of our solution in the challenge under different corruptions (fog, gaussian noise, and dark).
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Figure 4. Qualitative results of our solution in the challenge under different corruptions (zoom blur, snow, and motion blur).
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