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Abstract

This technical report summarizes our team - APEC
Blue’s solution to the RoboDrive Challenge (Track 3) in con-
Jjunction with ICRA 2024. The enhanced SurroundOcc frame-
work is introduced to refine occupancy prediction in complex
driving environments. The report delves into three key as-
pects to enhance algorithm performance: (1) Fine-tuning the
SurroundOcc network, (2) Optimizing model network struc-
ture, and (3) Ensembling multiple algorithmic models. Our
approach yielded a notable mloU score of 10.32% on the
test dataset, securing 2nd place in the challenge track. Code
and models have been released at: https://github.
com/amazingzby/robodriveChallenge.

1. Introduction

In the rapidly evolving domain of autonomous driv-
ing, the accuracy and resilience of perception systems are
paramount [1-4]. Recent advancements, particularly in
bird’s eye view (BEV) representations and LiDAR sens-
ing technologies, have significantly improved in-vehicle 3D
scene perception [5-9]. Yet, the robustness of 3D scene per-
ception methods under varied and challenging conditions —
integral to ensuring safe operations — has been insufficiently
assessed []. To fill in the existing gap, the 2024 RoboDrive
Challenge [10, 11], seeking to push the frontiers of robust
autonomous driving perception, is introduced.

Our team (APEC Blue) was selected as one of the top-
performing teams in Track 3: Robust Occupancy Prediction
of the 2024 RoboDrive Challenge [10]. During the challenge,
we investigated approaches for improving algorithm perfor-
mance across three aspects based on SurroundOcc [12]: (1)
Fine-tuning baseline models, (2) Optimizing model network
structures, and (3) Ensembling multiple algorithmic models.

Technical Report of the 2024 RoboDrive Challenge.
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Figure 1. Overview of the SurroundOcc framework [12].
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2. Approach

In this section, we will provide an introduction to our
method. We conducted a comparison between the occupancy
networks SurroundOcc [12] (baseline method) and FB-Occ
[13] (state-of-the-art method as of CVPR 2023). It is ob-
served that FB-Occ exhibits a much lower mean Intersection
over Union (mloU) on the validation set. Consequently,
our focus lies in the analysis and optimization of the occu-
pancy prediction task based on SurroundOcc. The pipeline
of SurroundOcc is illustrated in Fig. 1.

In our model analysis, we focused on examining the
influence of backbone networks and 2D-3D feature trans-
formations on the mloU metric. Specifically, we compared
the performance of ResNet-101 [14] and VoVNet-99 [15] as
backbone networks, and found that VoVNet-99 surpassed
ResNet-101 in mIoU on the validation set. However, on the
test set, VoVNet-99 exhibited notably inferior performance
compared to ResNet-101. Nevertheless, the integration of
VoVNet-99 into a multi-model ensemble led to enhance-
ments in the overall algorithm performance. Regarding 2D-
3D feature transformation, we primarily experimented with
different voxel sizes to assess their impact on mloU perfor-
mance. Our experiments revealed that increasing the voxel
size from [100,100,8] to [200,200,16] resulted in a slight im-
provement in algorithm performance on both the validation
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Table 1. Occupancy prediction performance of different settings on the test dataset.
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and test sets.

In terms of algorithm optimization, our primary focus
was on exploring ways to enhance algorithm performance
through model fine-tuning and loss optimization. In the
initial stages of the competition, we initiated the process
by fine-tuning the model using loss solely from the final
layer. Our rationale is that channeling the model’s attention
towards the loss associated with the final layer, as opposed
to considering losses from all feature layers, would result in
superior algorithm performance through fine-tuning. Sub-
sequently, we delved deeper into optimizing various loss
functions to boost the algorithm’s performance. These in-
cluded Focal Loss, weighted softmax loss, Lovasz-softmax
loss, L%, and L™, By incorporating a combination of
these diverse loss functions, we were able to further elevate
the algorithm’s performance.

Finally, we explored the enhancement of algorithm per-
formance through model ensemble. Initially, integrating mul-
tiple models contributed to the improvement of the mIoU
metric. Subsequently, increasing both the quantity and di-
versity of model ensembles further elevated the algorithm’s
performance.

3. Experiments
3.1. Datasets

This work follows the protocol in the 2024 RoboDrive
Challenge [10] when preparing the training and test data.
Specifically, the model is trained on the official train split
of the nuScenes dataset [1] and tested on the held-out com-
petition evaluation sets. The evaluation data was created
following RoboDepth [16—-18], RoboBEV [8, 19, 20], and
Robo3D [21, 22]. The corruption types are mainly from
three sources, namely camera corruptions, camera failures,
and LiDAR failures. For more details, please refer to the
corresponding GitHub repositories.

3.2. Experimental Setups

The framework is implemented using the PyTorch
framework [23] and is based on the MMDetection3D code-

base [24]. We train our models using a batch size of 2 on 2
NVIDIA V100 GPUs. The resolutions of all models are set
to 1600x900. The summary of results is presented in Tab. 1.

3.3. Ablation Study

Model Fine-tuning: Model A and B in Tab. 1 are the
results of the model fine-tuning section. Model A(9.40) uti-
lizes a smaller learning rate and trains solely on the loss from
the final layer, building upon the baseline model through fine-
tuning. Model B(9.63), based on Model A, further increases
the number of iterations and incorporates additional loss
methods. In the single-model section, both Model A and
Model B achieve better performance metrics compared to
other models. We attribute this not only to improvements in
fine-tuning and loss optimization but also to the increased
number of training iterations. Due to limitations in train-
ing resources, subsequent model iterations are limited to
15 - 20 epochs, far fewer than the training iterations in the
fine-tuning section. We believe that with sufficient training
resources, subsequent models would achieve better results.

Network Structure: Models C to E are the results
of the model structure optimization section. In this part,
models were trained from scratch, and results from different
network structures were compared. Model C(8.0) utilizes the
VoVNet-99 backbone network and achieves the best results
among all models on the validation set. However, it performs
the worst on the test set, indicating poor generalization per-
formance. Model D(8.92) employs ResNet-101, consistent
with the baseline model, and adopts the training strategy of
the best model in the fine-tuning section, resulting in slightly
better results than the baseline(8.66). Model E(9.02) further
improves the mloU metric by increasing the voxel size from
[100,100,8] to [200,200,16] in the structure of Model D.

Ensemble: Models F to H are the results of the model
ensemble section. The model ensemble strategy is as fol-
lows: (1) For each voxel, the predicted class with the highest
frequency is chosen as the final prediction. (2) If a voxel has
multiple equally predicted classes, the model with a higher
mloU value is given higher priority. Comparing Model F
(10.05, ensemble of A, B, E) with Model G (10.14, ensem-



ble of A, C, E) demonstrates that improving model diversity
(backbone diversity and voxel size diversity) can enhance
ensemble performance. The comparison between Models
F & G, and H (10.32, ensemble of all 5 models) indicates
that increasing the number of ensemble models can further
enhance performance.

4. Conclusion

In this report, we summarized our winning solution
for the RoboDrive Challenge (Track 3) in conjunction with
ICRA 2024. In the future work, we think that sufficient train-
ing resources and the incorporation of temporal information
have the potential to enhance algorithm performance.
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