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Abstract

We tested the state-of-the-art occupancy prediction
method SurroundOcc in the RoboDrive Challenge 2024. We
tried replacing its backbone and using more loss functions
to improve its robustness to out-of-distribution data. We
achieved 8.9% mIoU with ResNet101 as the backbone and a
loss function consisting of cross-entropy loss, segmentation
scale loss, geo scale loss, and Lovasz softmax loss. Our
method ranked the 3rd in the competition.

1. Introduction
Occupancy [1] is a newly developed perception task for
autonomous driving cars. It assigns an occupied probability
to each voxel in the 3D space to build a drivable area in
the 3D space [2–5]. occupancy unifies detection tasks such
as object detection and road segmentation into one model,
showing great potential to help achieve fully autonomous
driving [6–9].

Modern occupancy prediction methods [1, 10–12] con-
centrate on improving occupancy prediction accuracy with
multi-view image inputs. However, their evaluation bench-
marks usually lack out-distribution evaluation protocols,
which is essential for algorithms to adapt to real-world con-
ditions. Specifically, the commonly used datasets such as un-
Scenes [2] and Argoverse [13] have the problem that the test
and training sets have large overlaps. Under these evaluation
protocols, current methods that achieve high intersection-of-
union (IoU) may not perform well in real-world scenes. In
addition, these datasets lack enough simulation to weather
condition changes, sensor failures, and image distortions.
Thus, the methods trained on these datasets have little ro-
bustness to hardware failure and sensor noise, which could
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result in perception failure and traffic accidents.
The 2024 RoboDrive Challenge [14] targets probing the

Out-of-Distribution (OoD) robustness of state-of-the-art au-
tonomous driving perception models, centered around two
mainstream topics: common corruptions and sensor failures.
The challenge provides eighteen real-world corruption types
in total, ranging from three perspectives:
• Weather and lighting conditions, such as bright, low-light,

foggy, and snowy conditions.
• Movement and acquisition failures, such as potential blurs

caused by vehicle motions.
• Data processing issues, such as noises and quantizations

happen due to hardware malfunctions.
It provides several types of sensor failures including:
• Loss of certain camera frames during the driving system

sensing process.
• Loss of one or more camera views during the driving

system sensing process.
• Loss of the roof-top LiDAR view during the driving system

sensing process.
The 2024 RoboDrive Challenge [14] tries to fill the gap in
performance between academic studies and industrial appli-
cations and seeks to push the frontiers of robust autonomous
driving perception [15, 16].

In this competition, we conducted various experiments
to explore the Out-of-Distribution (OoD) robustness of the
state-of-the-art occupancy prediction method. We tried dif-
ferent combinations of backbones and loss functions. We
achieved the highest mIoU score of 8.94% with the backbone
of ResNet101, the multiple loss functions with cross-entropy
loss, segmentation scale loss, geo scale loss, and Lovasz soft-
max loss [17]. Our method ranked 3rd in the competition.

2. Approach
The pipeline of SurroundOcc [1] is illustrated in Fig. 1. It
first uses a backbone network to extract N cameras’ and M
levels’ multi-scale features X = {{Xj

i }Ni=1}Mj=1. For each
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Figure 1. The pipeline of SurroundOcc. First, it uses a backbone to extract multi-scale features of multi-camera images. Then it adopts
2D-3D spatial attention to fuse multi-camera information and construct 3D volume features in a multi-scale fashion. Finally, the 3D
deconvolution layer is used to upsample 3D volumes and occupancy prediction is supervised in each level.

level, it uses a transformer to fuse multi-camera features with
spatial cross-attention. The output of the 2D-3D spatial atten-
tion layer is a 3D volume feature instead of the BEV feature.
Then the 3D convolution network is utilized to upsample
and combine multi-scale volume features. The occupancy
prediction in each level is supervised by the generated dense
occupancy ground truth with a decayed loss weight.

3. Experiments

3.1. Datasets

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [14] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [2] and tested on the held-out competition
evaluation sets. The evaluation data was created follow-
ing RoboDepth [18–20], RoboBEV [21–23], and Robo3D
[15, 24]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR
failures. For more details, please refer to the corresponding
GitHub repositories.

3.2. Experimental Setups

We tested three backbones in this competition including
ResNet34 [25], ResNet101 [25], and VoVNet-99 [26].
VoVNet-99 is a densely connected module. Compared to
ResNet34, it aggregates features in early layers by concate-
nation to better preserve their characteristics in the output.

In addition, it uses effective Squeeze-Excitation to perform
the channel attention for the feature maps.

The occupancy prediction task can be considered as a
3D extension of 2D image pixel segmentation. Since the
mIoU (mean Intersection-over-Union) metric is adopted for
this competition, the Lovasz Softmax loss [17] designed for
directly optimizing the mIoU in the multi-class image seg-
mentation task could be an effective alternative. In addition
to the cross-entropy loss, semantic classification loss, and
geometry classification loss, there are 4 loss items used in
our method. In this competition, we tried two strategies to
balance these losses, i.e. loss normalization [27] and un-
certainty loss [28]. The loss normalization scales each loss
to ease the optimization, while the uncertainty loss consid-
ers each loss weight as a learnable parameter thus enabling
adaptive learning for loss weights.

3.3. Implementation Details

The framework was implemented using the PyTorch frame-
work [29] and was based on the MMDetection3D codebase
[30]. We used 8 NVIDIA A100 GPUs for training, each with
a batch size of 1. We optimized the method end-to-end with
the AdamW optimizer for 24 epochs. We employed a cosine
annealing learning adjustment strategy with a period of 500
iterations, setting the maximum and minimum learning rates
to 2e-4 and 2e-7, respectively.
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Table 1. mIoU of SurroundOcc under different configurations.

Backbone Loss Training Strategy mIoU
VoVNet-99 w/o Lovasz Softmax loss - 7.36
VoVNet-99 with Lovasz Softmax loss - 7.45
VoVNet-99 with Lovasz Softmax loss loss norm / uncertainty loss 7.80
baseline - - 8.66
ResNet101 with Lovasz Softmax loss loss norm / uncertainty loss 8.94

3.4. Comparative Study

Table 1 shows the results under different backbones, loss
combinations, and training strategies. As can be seen, Lo-
vasz Softmax loss [17] introduces a minor performance im-
provement with VoVNet-99 as the backbone. The loss nor-
malization and uncertainty loss further improve the mIoU to
7.80%. However, all these strategies do not reach the perfor-
mance level of the official baseline. We finally achieved a
mIoU of 8.94% by fine-tuning the official checkpoint with
the Lovasz Softmax loss [17] and both loss balance strate-
gies.

4. Conclusion
This work explored the out-of-distribution robustness of the
state-of-the-art occupancy prediction method SorroundOcc.
By setting different backbones and loss functions, we
achieved an mIoU of 8.9% and ranked 3rd in the Robo-
Drive Challenge 2024. More performance improvement is
likely achieved by deeply analyzing the statistics of PV and
BEV feature changes under various distortions. Masked au-
toencoders are also beneficial in improving the robustness.
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