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Abstract

This technical report outlines the solution that achieved
top-ranking performance in the Robust Occupancy Predic-
tion of the 2024 RoboDrive Challenge. Our approach is
based on ViewFormer, a robust vision-centric spatiotempo-
ral modeling method employing view-guided transformers.
Expanding upon ViewFormer, we further investigate offline
extensions that promote video temporal methods with future
data, model scaling up, and effective post-processing strate-
gies. These improvements and optimizations rank 1st place
in the challenge with remarkable mIoU scores of 24.07%
and 22.31% on the phase-1 and phase-2 corruption test sets,
respectively.

1. Introduction

In recent years, the field of vision-centric autonomous driv-
ing has emerged as a research focus, driven by its remarkable
cost-effectiveness and the potential to revolutionize trans-
portation systems worldwide [1–3]. Central to this endeavor
is accurately interpreting the real 3D world from 2D im-
ages captured by onboard cameras, which has stimulated the
exploration of advanced techniques to extract informative
spatial features from visual data [4–7].

One pivotal advancement in this area is the proposal of
3D occupancy representation, which unifies the notion of
foreground and background and discretizes the entire 3D
space into voxel-wise cells, with each cell annotated with a
semantic label. This approach offers a comprehensive and
structured framework for interpreting complex scenes.

In the context of the challenge, our solution is built on top
of our proposed ViewFormer [8], a transformer-based frame-
work designed to predict 3D occupancy with multi-camera
images as input, featuring view attention for spatial interac-
tion and multi-frame streaming temporal attention for tempo-
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ral interaction. Regarding spatial interaction, our view atten-
tion facilitates multi-view feature aggregation distinguished
from the projection-first deformable attention used by BEV-
Former [9] as analyzed in [8], allowing for constructing
more semantically informative and robust features. For tem-
poral interaction, the streaming temporal attention utilizes
online video data through a memory mechanism [10, 11]
in both training and inference to reduce training time and
maintain consistency. Moreover, as an offline extension, we
introduce a reverse video playback mechanism that allows
our online video temporal interaction method to benefit from
future data frames.

2. Our Solution

Our solution is based on ViewFormer [8], featuring view
attention and multi-frame streaming temporal attention. We
give a short introduction to the method in Fig. 1, please refer
to the official ViewFormer [8] paper for detailed methodol-
ogy as well as experimental analyses.

2.1. Spatial Modeling of ViewFormer

Built upon existing bird’s-eye-view (BEV) perception ap-
proach [9, 12, 13], our ViewFormer extracts multi-view im-
age features Ft via an image backbone and subsequently
refines queries through spatial interaction. Instead of adopt-
ing BEV queries, we directly utilize voxel queries V ′

t to
capture finer-grained 3D occupancy features. As the core
of the spatial interaction, our view attention is introduced
to adequately transform multi-view image features into 3D
space, which, in fact, presents significant difference from
the project-first deformable attention commonly employed
in prior works [9, 14–16]. Limited by sensor distribution,
the project-first method can only extract features from a sin-
gle image for most queries. In contrast, our learning-first
view attention aggregates multi-view features in a more rea-
sonable data-driven manner. This module provides a solid
foundation for us to construct robust 3D features.
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Figure 1. In our ViewFormer framework, the multi-view features Ft are first extracted from multiple images via a backbone. Then we
introduce view attention, allowing us to aggregate multi-view features for voxels V ′

t more adequately. In our streaming temporal attention,
we squeeze voxel queries V ′

t into BEV queries Bt. Each BEV cell of Bt interacts with historical multi-frame BEV features stored in the
streaming memory queue. The voxels Vt obtained from unsqueezing the updated BEV features are subsequently fed into 3D occupancy
prediction. We push the updated BEV queries into the memory queue for subsequent temporal interaction in the video stream pipeline.

2.2. Temporal Modeling of ViewFormer

Drawing inspiration from streaming video methods [10, 11],
we establish a streaming memory queue to dynamically cap-
ture historical features spanning N frames in both the train-
ing and inference phases, following the first-in, first-out
(FIFO) principle [10] for data entry and exit. Considering
the increased storage and computational overhead, we pro-
cess temporal modeling at the 2D BEV level. Specifically,
the voxel queries V ′

t are squeezed into BEV-level queries
Bt along the z-axis, with each BEV cell of Bt interacting
with the historical multi-frame BEV features stored in the
memory queue. Here, we employ ego transformation to han-
dle ego-motion. Subsequently, the voxels Vt, obtained by
unsqueezing the updated BEV queries, are used for 3D oc-
cupancy prediction. Meanwhile, we push the updated BEV
queries into the memory queue for subsequent temporal in-
teraction in the video stream pipeline.

2.3. Reverse Video Playback

Since the challenge permits leveraging future frame data,
we also propose a novel reverse video playback mechanism
(RVP) to further enhance offline accuracy. Unlike BEV-
Formerv2, which repeats inference for each frame within a
fixed sliding window, our method leverages future frames in
a more lightweight way without modifying our online frame-

work. By analyzing the discrepancy of perception accuracy
between the front and rear area of the vehicle in the online
video temporal interaction, we implement the reverse video
playback mechanism by simply playing the video backward.

As illustrated in Fig. 2, let’s take a stationary tree as an
example. Suppose the car moves forward and the tree is
in the rear area of the car, the corresponding voxel query
can consistently retrieves historical features of the tree from
the memory queue as in Fig. 2(a). On the contrary, as in
Fig. 2(b), in case that the tree appears in front of the car,
which means it is newly observed, as a result, the voxel
query actually gains no benefit from temporal interaction.
We evaluate the perception accuracy of the front and rear
area of the ego-vehicle respectively, the finding indicates that
the accuracy of the rear area can be approximately 3% more
than that of front area, and obviously, reversing the video
yields opposite result. Hence, we combine the inference
outputs of normal video playback and reverse video playback
to produce the final predictions. Additionally, to enhance
the accuracy of the reverse video playback mechanism, we
conduct fine-tuning for the trained model using reversed data
for 8 epochs.

2.4. Test-Time Augmentation

We apply horizontal flipping to input images for spatial test-
time augmentation, and notably, in our experiments on the
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Table 1. 3D Occupancy Prediction on nuScenes Validation Set. Our ViewFormer demonstrates significant performance improvements
over previous SOTAs in terms of both the mIoU and IoUgeo.
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BEVFormer [9] 16.75 30.50 14.22 6.58 23.46 28.28 8.66 10.77 6.64 4.05 11.20 17.78 37.28 18.00 22.88 22.17 13.80 22.21
TPVFormer [15] 17.10 30.86 15.96 5.31 23.86 27.32 9.79 8.74 7.09 5.20 10.97 19.22 38.87 21.25 24.26 23.15 11.73 20.81
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Figure 2. Online video temporal interaction.

RoboDrive dataset [19], we find that 3D spatial flips yield no
improved accuracy. In addition, we introduce a temporal test-
time augmentation strategy by transforming the inference
results of the entire scene into a unified global coordinate
system to facilitate result fusion, where the weighting factor
assigned to each occupancy is determined by its distance to
the ego-vehicle in the respective frame. We then map the
occupancies of static semantic categories back to each indi-

vidual frame and replace the corresponding static occupancy
results.

3. Experiments

3.1. Datasets and Metrics

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [19] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [1] and tested on the held-out competition
evaluation sets. The occupancy dataset is built based on the
nuScenes dataset [20, 21]. The occupancy annotations are
generated by [18]. The evaluation data was created follow-
ing RoboDepth [22–24], RoboBEV [25–27], and Robo3D
[28, 29]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR
failures. For more details, please refer to the corresponding
GitHub repositories.

3.2. Evaluation Mterics

In terms of evaluation metrics, we utilize the mean
Intersection-over-Union (mIoU) across categories and the
single-class IoUgeo to evaluate the occupancy state.

3.3. Training Strategies

The framework is implemented using the PyTorch frame-
work [30] and is based on the MMDetection3D codebase
[31]. We train all ablation and large-scale models with a
batch size of 8 on 8 NVIDIA A100 GPUs and utilize AdamW
optimizer with a learning rate of 2 × 10−4 and a weight
decay of 0.05, where the learning rate of the backbone under-
goes layer-wise decay. Our models are trained for 24 epochs
for occupancy tasks. Additionally, we fine-tune the trained
model on RVP data for 8 epochs as mentioned above.
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3.4. Ablation

During our exploration period, we evaluate our various meth-
ods with a smaller model scale, which adopts an input image
size of 256 × 704 and a voxel resolution of 50 × 50 × 8,
leveraging the InternImage-Tiny [32] image backbone. The
remarkable milestones are outlined in Tab. 1. Version A
serves as our baseline approach. In Version B, we introduce
depth supervision following BEVDepth [33]. Version C
showcases the results of the fine-tuned model with RVP data.
Version D combines the outcomes of Version B and Version
C, as discussed in Section 2.3. In Version E, we employ
test-time augmentations. It is worth noting that the existing
SOTA SurroundOcc [18], as shown in Tab. 1, adopts a large
model scale with ResNet101 backbone, 900 × 1600 image
size, and 200 × 200 × 16 voxel resolution.

3.5. Scaling Up

After the method exploration, we advance to upscale our
model. For Version F and Version G in Tab. 1, we employ the
larger ConvNeXt V2-H [34] backbone, an input image size
of 960 × 1760 and a voxel resolution of 100 × 100 × 8. The
other setups of Version F remains consistent with Version B,
while the other setups of Version G remains consistent with
Version E. Version G achieves 20.79% mIoU on the phase-2
corruption test set of the 2024 RoboDrive Challenge [19].
In our experiments, increasing the voxel resolution to 200
× 200 slightly improves accuracy on the validation set but
marginally reduces accuracy on the corruption test set.

3.6. Ensemble

A model ensemble approach is applied to the final submis-
sion, where we employ popular image backbones pretrained
on ImageNet [35], including ConvNeXt V2 [34], InternIm-
age [32], and BEiT-based ViT-adapter [36]. By fusing the
outputs of all the models through ensemble techniques, we
achieve our best result on the phase-2 corruption test set with
a mIoU score of 22.31%.

4. Conclusion
In the 2024 RoboDrive Challenge, our solution is based on
our proposed ViewFormer, a robust vision-centric spatiotem-
poral modeling method with view-guided transformers. We
also introduce offline techniques to further enhance the final
results, including the reverse video playback mechanism to
leverage future data, model scaling up, and effective post-
processing strategies. Through all the enhancements and
optimizations, we rank the 1st place in the challenge with ex-
ceptional mIoU scores of 24.07% and 22.31% on the phase-1
and phase-2 corruption test sets respectively.
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