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Abstract

Most existing depth estimation models are trained on
“clean” datasets, resulting in a lack of robustness when en-
countering out-of-distribution data. To address this issue,
the BUAATrans team has developed a new multi-branch net-
work architecture called FFASDepth. This architecture uses
DINOv2 and ResNet as backbones to perform multi-scale
feature extraction. Our method introduces a novel channel-
attention-based fusion technique that employs the input im-
age as an embedding vector. This allows for the effective
redistribution and fusion of features from both branches. Ad-
ditionally, we have incorporated semi-supervised learning
augmentations, namely CutFlip and AugMix. These augmen-
tations enhance the generalization capabilities of the model.
By combining these innovative strategies, FFASDepth signif-
icantly improves the robustness of depth estimation models,
ensuring more reliable performance in varied and challeng-
ing environments.

1. Introduction
In the field of computer vision, depth estimation is a critical
task, essential for applications such as autonomous driving
[1–5] and 3D reconstruction [6–8]. However, most current
learning-based depth estimation models are primarily trained
and tested on clean datasets. These models often fail to
fully consider the various challenges encountered in real-
world applications, such as adverse weather and lighting
conditions, external interference, and hardware failures [9].
This limitation often results in a lack of necessary robustness
and generalization in real-world environments, potentially
leading to serious safety risks.
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To address this issue, we propose a new model variant
based on the SurroundDepth [10] model—Fusing Features
Across Scales Depth Estimation (FFASDepth), aimed at en-
hancing the robustness of autonomous driving perception
models in out-of-distribution (OoD) scenarios. By utilizing
a multi-branch encoder and fusing features across differ-
ent scales, FFASDepth significantly enhances the model’s
adaptability to OoD situations. Additionally, we adopted a
semi-supervised data augmentation to further enhance the
accuracy and reliability of depth estimation.

FFASDepth builds upon and refines the SurroundDepth
architecture, employing a multi-branch strategy to enhance
depth estimation robustness and accuracy. Utilizing DinoV2
[11] and FeatUp [12], one branch learns and super-resolves
unsupervised image features, restoring high-level spatial in-
formation. Simultaneously, another branch leverages ResNet
[13] to extract low-level edge features. These features are
fused using SENet [14] technology, which adds a simpli-
fied ResNet to encode input images into embedding vectors
that act as a subtle cue for channel fusion. The channel-
attention mechanism effectively manages feature prioritiza-
tion, addressing information overload and guiding precise
integration across branches.

To further enhance adaptability, FFASDepth uses the Cut-
Flip operation [15] and AugMix [16]. These innovations col-
lectively advance the model’s performance in varied imaging
conditions and out-of-distribution scenarios.

Our approach secured second place in the 2024 Robo-
Drive Challenge [17], a result that not only validates the
exceptional performance of the FFASDepth model in han-
dling OoD scenarios but also demonstrates its effectiveness
and foresight in practical applications. These achievements
mark significant progress in the field of autonomous driving
depth estimation.
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2. Related work

Monocular depth estimation based on deep learning can be
divided into three main learning paradigms:

Supervised learning: In this paradigm, the model is
trained by learning the mapping relationship between input
images and their corresponding depth maps, with the primary
goal of minimizing the difference between predicted depth
and true depth. Representative studies include: Liu et al. [18]
combine deep CNNs and continuous CRFs for monocular
depth estimation; Laina et al. [19] use a fully convolutional
residual network modified from the ResNet-50 architecture;
Aich et al. [20] propose a bidirectional attention network
(BANet) for monocular depth estimation. In our research, we
use real values generated from point cloud data to supervise
the generation of depth feature maps [21, 22].

Self-supervised learning: In the field of depth estima-
tion, self-supervised learning typically utilizes the temporal
continuity of image sequences to train models. For example,
Zhou et al. [23] estimate depth and pose simultaneously us-
ing a single-view CNN; Casser et al. [24] address monocular
depth and ego-motion through video sequences; Tosi et al.
[25] propose an integrated framework for depth estimation,
optical flow, semantic, and motion segmentation; Zhao et al.
[26] develop MonoViT, a framework combining CNNs and
visual transformers. In our work, we inherit the pose network
architecture from SurroundDepth to train depth features.

Semi-supervised learning: This approach first trains
an initial model of depth estimation using limited labeled
data, then enhances the model’s performance using unlabeled
data. Representative works include: Kuznietsov et al. [27]
develop a learning model based on sparse true depth; He et al.
[28] propose a wearable monocular depth estimation system
for stereo images; Ramirez et al. [29] integrate semantic
information by adding a semantic segmentation decoder;
Zhao et al. [30] use a synthetic data method combining
image style transformation and depth estimation modules. In
our research, we supervise the network model enhanced by
data augmentation using depth maps obtained from training
on clean datasets.

3. Approach

As illustrated in Figure 1, FFASDepth comprises three pri-
mary components. The first component features a multi-
branch network architecture. The second component intro-
duces a novel module that effectively fuses the features from
the two branches, guided by the input embedding vector.
The third component employs data augmentation techniques
based on CutFlip and AugMix.

Multi-branch network architecture. In building upon
the research presented in SurroundDepth [10], we integrate
a similar ResNet-based encoder architecture within a branch
of our feature extraction module. This encoder excels at

delineating edge features from images; however, it is sus-
ceptible to introducing noise, particularly when processing
corrupted data.

To mitigate this issue, we incorporate a self-supervised,
transformer-based Dinov2 model. This model is adept at
capturing high-level semantic information during training,
thereby enhancing the overall robustness of our system. De-
spite these strengths, the Dinov2 model’s coarse-grained
approach to handling corrupted images limits its capacity
to generate precise depth maps independently. Furthermore,
due to its tendency to aggregate information across extensive
areas, the features generated often lack the requisite spa-
tial resolution for executing detailed prediction tasks such
as depth estimation. To address this deficiency, we em-
ploy a super-resolution technique for feature restoration as
proposed in the FEATUP [12]. Specifically, we utilize a
bootstrap upsampler based on the Joint Bilateral Upsampler
(JBU) [31] stack. This method leverages high-resolution
signals as a guide to reinstating high-frequency details, and
applying spatial weights within the neighborhoods of low-
resolution feature maps. Subsequently, we downsample
these enhanced features to construct a feature pyramid that
aligns with the dimensions of the pyramid extracted via the
ResNet encoder. This integrated approach ensures the preser-
vation of spatial information, crucial for accurate depth tasks.

Features Across Scales Fusion. We propose a sophis-
ticated feature fusion module, designed to enhance the in-
tegration of features derived from different neural network
models, notably DINOv2 and ResNet. At the heart of this ar-
chitecture lies the Feature Fusion Module, which employs a
series of Squeeze-and-Excitation (SE) blocks [32] to perform
attention-based fusion of features. Each SE block is meticu-
lously engineered to refine the feature maps by leveraging
both average and maximum pooling strategies, thereby cap-
turing complementary contextual information from the input
feature maps. The output from these pooling layers is sub-
sequently processed through a sequence of fully connected
layers, which apply a sigmoid activation function to gener-
ate a dynamic gating mechanism. Furthermore, a residual
network implementation is utilized to encode the embedding
vectors of the input image, enabling the implicit expression
of the image’s noise information for subsequent feature reas-
signment. The adjusted features from both sources are then
weighted by the image feature embeddings. This weighting
step is critical, as it allows the model to perform a weighted
average based on the embedded image features, rather than
a simple element-wise addition or multiplication. This ap-
proach ensures that the fusion process is guided by the se-
mantic and contextual relevance of the features within the
image, thereby enhancing the model’s ability to focus on
pertinent features while effectively disregarding irrelevant
ones.

Data Augmentation. In this section, a simple CutFlip

2



D
IN

O
v2

FEA
TU

P

D
ow

nsam
ple B

lock 1
Encoder B

lock 1

Encoder B
lock 2

Encoder B
lock 3

Encoder B
lock 4

Encoder B
lock 5

B×C×H×W

D
ow

nsam
ple B

lock 2

D
ow

nsam
ple B

lock 3

B×C×
1/2H×1/2W

D
ow

nsam
ple B

lock 4

B×2C×
1/4H×1/4W

D
ow

nsam
ple B

lock 5

B×4C×
1/8H×1/8W

Fusion 
Block

B×C×H×W B×C×
1/2H×1/2W

B×2C×
1/4H×1/4W

B×4C×
1/8H×1/8W

Fusion 
Block

Fusion 
Block

Fusion 
Block

Em
bedding V

ector 
Encoder

Fusion 
Block

B×8C×
1/16H×1/16W

B×8C×
1/16H×1/16W

Supervise

Supervise

Depth GT

Pose Network 
Branch

ResNet Branch

Raw Data

Data-enhanced

C
V

T

U
pSam

ple 

C
onvB

lock

Decoder

Skip 
Connections

Raw Data

FFASDepth

Depth Feature Map

Supervise

Features Across
Scales Fusion

CutFlip

AugMix

Data Augmentation

Figure 1. Overview of FFASDepth.

method is employed to enhance the diversity of the data. One
of the significant risks associated with deep estimation tasks
is the model’s substantial reliance on vertical image positions.
To encourage the model to focus on more valuable cues, the
CutFlip technique divides the input sample vertically into an
upper and a lower part, and then flips these two parts along
the vertical axis. This weakens the relationship between
depth and vertical image position, allowing the model to fit
a greater variety of data types.

Furthermore, we apply the AugMix technique [16] in the
data enhancement section to improve the robustness and un-
certainty estimation of the image classification model. A set
of augmentation transformations is selected, including ‘auto-
contrast’, ‘equalize’, ‘posterize’, ‘rotate’, ‘solarize’, ‘shear’,
and ‘translate’, where the transformations do not overlap
with the damage algorithm of the test set. These are iden-
tified as possible augmented atomic operations. Firstly, K
weights are randomly generated according to the Dirich-
let distribution for mixing different images. Then, three
enhancement transforms are randomly selected to form mul-
tiple enhancement chains. One of the enhancement chains
is randomly selected to enhance the image and mix the en-
hanced image. Finally, the weights are randomly generated
according to the beta distribution, and then the image ob-
tained above is mixed with the original image. In comparison

to other enhancement methods, such as CutMix and MixUp,
it addresses the issue of image distortion while maintaining
image diversity.

Training pipeline. We set up a total of three steps to
complete the training of our model in stages.

Step One: We follow the Self-supervised pre-training
method in SurroundDepth by extracting correspondences for
images with neighboring viewpoints using SIFT descriptors
and converting them into sparse depths with true scales using
triangulation, and using these sparse depths to pre-train the
depth estimation network so that it can predict depth maps
with true scales. We minimize the photometric reprojection
error Lr [33]. This loss can be calculated as follows,

Lr = min
t′

pe (It, It′→t) ,

pe (Ia, Ib) =
α

2
(1− SSIM (Ia, Ib)) + (1− α) ∥Ia, Ib∥1 .

(1)
Moreover, we apply the following smoothness loss [34],

Ls = |∂xd∗t | e−|∂xIt| + |∂yd∗t | e−|∂yIt|, (2)

In this step, the total loss is,

Lstep1
=

1

N

N∑
s=i

(αLr + λLs) (3)
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where α and λ denote adjustable hyperparameters.
Step Two: We use a Resnet and DinoV2 dual branching-

based network for supervised learning under sparse point
cloud data. We minimize the L1 error of the sparse point
cloud concerning the generated depth map. This loss can be
calculated as follows,

Ll1 =
1

N

N∑
i=1

∣∣∣di − d̂i

∣∣∣ (4)

where di and d̂i denote ground depth and estimated depth.
In this step, the total loss is,

Lstep2
=

1

N

N∑
s=i

(αLr + λLs + βLl1) (5)

where α, λ and β denote adjustable hyperparameters.
Step Three: We integrate the data augmentation technique

to bolster the robustness of our model. Specifically, we use
AugMix to employ the augmentation chain strategy to pro-
duce a set of strongly augmented images. Concurrently, we
utilize a simple image enhancement algorithm, which in-
volves fine-tuning the brightness and contrast, to create a
distinct set of weakly augmented images. Our model syn-
thesizes depth maps across three distinct classes of images,
denoted as D, Dw, and Ds. To enhance the stability of the
model’s estimation, we calculate the Kullback-Leibler (KL)
divergence between these image classes and incorporate it
as a consistency loss.

M = (D +Dw +Ds ) /3 (6)

LKL (D,Dw, Ds) =

KL (D | M) +KL (Dw | M) +KL (Ds | M)
(7)

During the training period, the total loss adds up to the four
losses mentioned above,

Lstep3
=

1

N

N∑
s=i

(αLr + λLs + βLl1 + γLKL) (8)

where α, λ, β and γ denote adjustable hyperparameters.

4. Experiments
4.1. Datasets

We conducted experiments using the publicly accessible
nuScenes dataset [1]. This dataset is officially divided into
training, validation, and testing subsets. Specifically, we
utilized 20,096 training items and 6,019 validation items
from the nuScenes dataset. The dataset comprises images
with a resolution of 900 × 1600 pixels. During data loading,
we resized each image to various scales. We follow the pro-
tocol in the 2024 RoboDrive Challenge [17] when preparing

the training and test data. Specifically, the model is trained
on the official train split of the nuScenes dataset [1] and
tested on the held-out competition evaluation sets. The eval-
uation data was created following RoboDepth [9, 35, 36],
RoboBEV [37–39], and Robo3D [40, 41]. The corruption
types are mainly from three sources, namely camera corrup-
tions, camera failures, and LiDAR failures. For more details,
please refer to the corresponding GitHub repositories.

4.2. Implementation Details

The model is implemented based on the MMDetection3D
codebase [42]. We implemented the FFASDepth framework
using PyTorch. Six NVIDIA GTX 4090 GPUs were used
for model training, each with a batch size of 6. We used
the FFASDepth framework for training with an epoch of 5,
based on the provided Surrounddepth model pose parameters.
Throughout the training process, we implemented a cosine
annealing strategy to modulate the learning rate across differ-
ent epochs. The learning rate initiated at 5e-5 and gradually
diminished to zero. Selecting the best parameters from the
previous step, we added the AugMix [16] and trained again
with an epoch of 3.

4.3. Comparative Study

As shown in Table 1, our proposed FFASDepth model out-
performs the baseline model in all metrics, indicating that
our model can effectively enhance the robustness of the
model to cope with different corruptions. We compared vari-
ous modules of our model with other common and similar
modules. In terms of the framework, compared to the single-
branch ResNet framework provided by SurroundDepth and
and single-branch DinoV2 framework, our proposed multi-
branch framework that integrates DinoV2 and ResNet im-
proved the accuracy by 10% on the corruptions dataset, ef-
fectively extracting deep feature information. In the upsam-
pling module, we chose to compare DinoV2 with Vision
Transformers for Dense Prediction (DPT) [43] and found
that DinoV2 is more effective at extracting structural feature
information in damaged datasets, achieving a 10% improve-
ment in accuracy compared to DPT. for the fusion module,
we adopted three different methods to fuse features extracted
from different branches. These methods include direct ad-
dition of H × W values under the same channel(Addition),
channel merging followed by convolution to revert to the
original channels(Concatenate), and our proposed FFAS-
Depth method. Experimental results show that our FFAS-
Depth fusion method achieves a 5% to 10% increase in ac-
curacy compared to the other two simple addition methods,
effectively combining the features extracted by DinoV2 and
ResNet. Overall, our model demonstrates superior perfor-
mance and robustness on datasets with corruptions through
strategic choices in framework, upsampling, and fusion mod-
ules.
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Table 1. Quantitative results for different modules are presented. Note: During our comparative experiments, we ensured that the model
frameworks within each module remained consistent. While, differences existed between the frameworks used in different comparisons,
primarily reflected in whether depth ground truth Supervision and AugMix were employed.

comparison Method Abs Rel↓ Sq Rel↓ RMSE↓ log RMSE↓ δ < 1.25↑ δ < 1.252↑ δ < 1.253↑

Supervision (×) AugMix (×)

Framework
ResNet 0.304 3.060 8.528 0.400 0.544 0.784 0.891
DinoV2 0.287 3.260 8.076 0.370 0.580 0.819 0.914

MultiBranch 0.271 2.699 7.867 0.358 0.588 0.822 0.918
Supervision (✓) AugMix (×)

Upsampler Module DPT 0.263 2.447 8.537 0.384 0.577 0.793 0.899
Featup 0.242 2.247 7.697 0.353 0.631 0.837 0.918

Supervision (✓) AugMix (✓)

Fusion Module
Addition 0.215 1.865 6.880 0.315 0.684 0.866 0.934

Concatenate 0.223 1.946 7.217 0.326 0.668 0.858 0.931
FFAS 0.204 1.745 6.490 0.300 0.709 0.882 0.944

Table 2. Quantitative results of ablation experiments with different modules in the FFASDepth model are presented. Notations: “Supervision”
indicates that we add lidar depth ground truth in training; “AugMix” indicates that we use AugMix in the image loader.

Method Abs Rel↓ Sq Rel↓ RMSE↓ log RMSE↓ δ < 1.25↑ δ < 1.252↑ δ < 1.253↑

Surrounddepth 0.304 3.060 8.528 0.400 0.544 0.784 0.891
FFAS 0.271 2.699 7.867 0.358 0.588 0.822 0.918
FFAS + AugMix 0.238 2.055 7.392 0.338 0.641 0.840 0.924
FFAS + Supervision 0.242 2.247 7.697 0.353 0.631 0.837 0.918
FFAS + Supervision + AugMix 0.204 1.745 6.490 0.300 0.709 0.882 0.944

4.4. Ablation Study

To further validate the effectiveness of our proposed mod-
ules, we extracted relevant results of the FFASDepth model
from Table 1 and recombined these with the findings from
our ablation study, which are detailed in Table 2. As indi-
cated in Table 2, the addition of the Supervision and AugMix
modules individually led to an approximate 15% improve-
ment in various metrics. When these modules were used
in conjunction, the precision improved by about 40%. The
results of the ablation study demonstrate that each module in
our model effectively contributes to depth estimation in cor-
rupted datasets, thereby significantly enhancing the model’s
robustness.

5. Conclusion
In this study, to improve the accuracy of depth estimation
in corruptions datasets, we synthesized existing research
on monocular depth estimation and introduced a novel
method that combines multiple sub-networks and channel
self-attention mechanisms. We extracted both deep and
surface-level feature information from images using vari-
ous networks, employing channel self-attention to weight
these features effectively for accurate depth information re-

trieval. Subsequently, these images were enhanced for train-
ing purposes, aimed at boosting the model’s robustness. The
results affirm that our strategic model composition signifi-
cantly improves depth estimation performance on corruption
datasets, not only enhancing depth prediction accuracy but
also markedly bolstering the model’s resilience to dataset
flaws. Ultimately, we achieved a second place ranking in
Track 4 of this competition.
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