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Abstract

MonoViT is an enduring method in unsupervised estima-
tion known for its robustness in disturbed data. Our aim
was to explore the performance and robustness of MonoViT
in full-supervised multi-view Settings. We tested both Sur-
roundDepth training styles in the nuscenes data set using
SurroundDepth as the multi-view training framework. The
robustness probing sets provided by the track4 of the 2024
RoboDrive Challenge [1] demonstrate its robustness in multi-
view depth estimation.

1. Introduction

At present, the self-supervised deep estimation architecture
relies on sunny weather scenarios to train deep neural net-
works. However, in many places, this assumption is too
strong for practical usages, such as autonomous driving [2–
4]. For example, in the UK (2021), there were 149 days of
rainfall [5]. In order for these architectures to be effective
in real-world applications, it is necessary to create mod-
els that can summarize all weather conditions, time of day,
and image quality. In recent years, Dosovitskiy et al. [6]
proposed the ViT model, which introduces a transformer
structure into computer vision and outperforms CNN in im-
age classification tasks [7]. Thanks to its powerful modeling
ability, transformer-based visual structures quickly occupy
the rankings of various tasks, including object detection
and semantic segmentation [8–13]. At present, research has
begun to compare the robustness between ViT and CNN,
and through experiments, it has been found that ViT has
a stronger recognition ability on general disturbances than
CNN. However, this study only draws preliminary empirical
conclusions and lacks a specific analysis of each component
and design unit of the ViT model. On the other hand, a large
number of ViT variants have been proposed, such as Swin,
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PVT, etc. In last year’s competition, MonoViT and its deriva-
tive methods performed exceptionally well in testing data.
With the effectiveness of Transformer+CNN in foreground
and background relationships, scale change perception, and
other directions, their generalization performance in differ-
ent weather conditions was also astonishing. Compared with
the optimal method of the same period, their advantages
were obvious.

2. Approach
Our proposed solution consists of a training pipeline and an
image restoration module.

2.1. Training Pipeline

In our work, we tested the robustness of four different depth
estimation models, with MonoViT performing best. The
specific structure is shown in Figure 1 below.

MonoViT, presented at the 2022 3D Vision International
Conference 3DV, has garnered considerable attention since
its publication due to its remarkable accuracy and generaliz-
ability, poised to become a new benchmark method!

Compared to MonoDepth2 [14], the key innovation of
MonoViT [15] lies in its deep estimation network frame-
work design. Essentially, it employs a CNN+Transformer
architecture in lieu of the previously prevalent ResNet. This
integration of CNN’s fine-grained detail perception with
Transformer’s extensive long-range feature extraction yields
state-of-the-art performance on the KITTI dataset.

The encoder incorporates the MPVIT [10] structure, intro-
duced in CVPR 2022, which primarily facilitates the seam-
less integration of CNN and Transformer frameworks, en-
hancing image feature extraction capabilities significantly.
The decoder, drawing inspiration from HR-Depth’s multi-
scale feature fusion approach, effectively integrates features
across various scales. The specific structure is shown in
Figure 2.

The scheme’s accuracy on the KITTI dataset is particu-
larly impressive, achieving an Abs Rel error below 0.1 for
the first time and a precision metric 1 surpassing 0.9.
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Figure 1. Overall Structure

We used two types of SurroundDepth [16] training to train
the depth model as well as its reconstructed loss function.

2.2. Restoration Module

We used the Restormer to restore the image of the test data
set, but we did not train the new model and used the official
test model.

Restormer [17] is another masterpiece by the authors of
MPRNet [18] and MIRNet [19] in the field of image restora-
tion, and also another SOTA of Transformer technology in
the low-level field. Two improvements, MDTA and GDFN,
were proposed to address the challenges of Transformer in
high-resolution image restoration, greatly alleviating the is-
sues of computational complexity and GPU cache usage.
The proposed solution refreshed the SOTA performance of
multiple image restoration tasks.

3. Experiments

3.1. Datasets

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [1] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [2] and tested on the held-out competition
evaluation sets. The evaluation data was created follow-
ing RoboDepth [20–22], RoboBEV [23–25], and Robo3D
[26, 27]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR
failures. For more details, please refer to the corresponding
GitHub repositories.

3.2. Implementation Details

The framework is implemented based on the MMDetec-
tion3D codebase [28]. Our model consists of multiple
NVIDIA A100 public servers for training, and there is no
fixed number of training cards. Most of the tasks submitted
are single or two cards. We believe that this does not affect
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Figure 2. MPVIT

the training results, and we use the parameters of the baseline
model. Resources are limited, so there is no change to the
small parameters.

3.3. Main Results

Table 1 shows our ablation experiments, we did not use the
training methods in the baseline model, in the first phase of
the submission, and we found that this did not help improve
the score. In the table, we replace several depth estimation
models, and at the end, we add TTA.

abs rel sq rel rmse rmse log
ZeroDepth 0.3853 5.7303 9.4417 0.4453
CADepth 0.3816 6.0043 9.6141 0.4497
MonoViT 0.2725 2.4170 8.1429 0.3734

MonoViT+TTA 0.2644 2.3196 7.9612 0.3632

4. Conclusion
Our method has proved the effectiveness and robustness
of MonoViT in multi-view depth estimation in different
data sets. We believe that improving the applicability of
Transformer-like structures in dense estimation and atten-
tion modules that can improve the acquisition of network
dynamic information is the key to optimizing OOD data,
which is also the direction of our future work.
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