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Abstract

This technical report summarizes the champion solu-
tion for the RoboDepth Challenge, which is held in the
ICRA 2024 RoboDrive Workshop. DINO-SD is a multi-
view supervised depth estimation model. Our model
primarily focuses on addressing robustness issues in
corrupted environments of autonomous driving. We use
pretrained DINOv2 [1] as the backbone, M-DPT, and
DPT [2] as a decoder. To enhance the robustness of the
model, we have chosen AugMix [3] as our data augmen-
tation strategy. Additionally, in the testing pipeline, we
have implemented denoising [4] and equalization for
the images. In Track 4 of the 2024 RoboDrive Challenge
[5], our model achieved an Abs Rel of 0.187, which is
the SOTA result on this dataset. The other six metrics
also achieved SOTA performance.

1. Overview
Depth estimation, which aims to estimate the distance of
every point in the image, is a crucial task in 3D vision with
important applications such as autonomous driving [6–8],
augmented reality [9], virtual reality [10], and 3D recon-
struction [11, 12]. Compared to acquiring depth using depth
sensors such as Lidar [13–15], estimating depth from images
can effectively reduce hardware costs and produce dense
depth maps. This makes depth estimation algorithms the
primary choice in these fields.

Depth estimation tasks can be categorized into monocular
depth estimation and multi-view depth estimation according
to the number of cameras used. Monocular depth estimation
is inherently limited by its reliance on a single viewpoint,
which compromises its robustness. In contrast, multi-view
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depth estimation provides a comprehensive 360◦ view of
the surroundings, which can more accurately estimate depth
and is robust to changes in scene geometry. As sensor tech-
nologies advance and manufacturing costs decrease, multi-
view depth estimation has progressively replaced monocular
depth estimation as the industry standard. Notable works in
this field include MVSNet [16], SurroundDepth [17], and
S3Depth [18].

However, existing multi-view depth estimation methods
still do not perform satisfactorily in real-world scenarios
[19]. The main reason is that real-world sensor data often
contains corruptions, such as adverse weather and sensor
noise, and most autonomous driving training datasets pri-
marily consist of clean data. Existing methods [17, 18] lack
robustness to noise. Several studies have focused on enhanc-
ing the robustness of depth estimation [20–23] through the
use of additional training data in different scenes. However,
the introduction of additional data still cannot cover all sit-
uations in real-world scenarios. Given the prohibitive cost
of acquiring large volumes of corrupted data, and consid-
ering that expanding training datasets may not encompass
all real-world corruptions, developing a robust multi-view
depth estimation model capable of performing well on out-
of-distribution (OoD) data is imperative.

Inspired by the Depth Anything [24] framework, we in-
troduce DINO-SD, a novel approach aimed at improving
the robustness of surround-view depth estimation models.
This framework is designed to handle a variety of environ-
mental conditions and sensor imperfections, enhancing the
reliability of depth estimation in autonomous driving and
other critical applications.

2. Technical Approach
2.1. Overview

Given 6 surrounding views Is ∈ R6×3×H×W . The goal of
the proposed DINO-SD is to output 6 corresponding depth
maps Ds ∈ R6×1×H×W . As shown in Fig. 1, the proposed
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DINO-SD encompasses three principal phases: feature ex-
tracting, fuse and decoding, and depth estimation. In the
following, we will introduce the three phases in detail.

2.2. DINO-SD

Our DINO-SD uses the pretrained DINOv2 [1] as the en-
coder, M-DPT, and DPT [2] as a decoder. The reason we
use Dinov2 is that Dinov2 can extract robust image features
compared with other encoders. It helps to improve the model
performance when processing the OoD data.

Furthermore, we choose DPT [2] as our decoder. We
also modify the structure of DPT to adapt for surround-
view depth estimation and propose the Multiview-DPT (M-
DPT) as shown in figure 1. We introduce the adjacent-view
attention into DPT.

In the previous surround-view depth estimation task, Sur-
roundDepth [17] uses the cross-view self-attention while
S3Depth[18] uses the adjacent-view cross-attention.

Let Fi ∈ RN×C×H
n ×W

n , i = 1, 2, 3, 4, 5, 6 be the feature
maps obtained from i-th view, where H and W indicate the
height and width of the input images, N represents the batch
size and C stands for the dimensions of the feature map.
For self attention, the feature maps Fi are concatenated and
reshaped into F ∈ RN× 6HW

n2 ×C and then used to compute
the Q, K, V from F . The formula 1 shows the calculation
process.

Q = WQF

K = WKF

V = WV F

F = sofrmax(
QTK√

C
)V

(1)

For adjacent-view cross attention, K and V are computed
from the adjacent-view feature maps Fj , j ∈ (i− 1, i+ 1).
The feature maps Fi are shaped into Fi ∈ RN×HW

n2 ×C and
then used to computed the Q, K, V. The formula 2 shows the
calculation process.

Q = WQFi

K = WKFj

V = WV Fj

Fi = softmax(
QTK√

C
)V

(2)

S3Depth’s performance is better than SurroundDepth, so
we use the adjacent-view cross attention. We also try the
cross-view self attention but the results show that adjacent-
view cross attention is better than cross-view self attention.
More details can be found in section 3. To introduce self-
attention or cross-attention into DPT, we perform a self-
attention or cross-attention operation before the feature maps
are fed into the Fusion module of DPT. More details for DPT
structure can be found in [2].

Our depth head is very simple, containing only two con-
volutional layers and a sigmoid head.

2.3. Training Pipeline

Our model training pipeline is shown in the figure 2a. For
surrounding-view images Is ∈ R6×3×H×W , we first use DI-
NOv2 to extract the feature maps F ∈ R6×HW

n2 ×C and then
we use M-DPT and DPT to decode the feature maps. Finally,
we use a depth head to get the depth map D ∈ R6×1×H×W .
We use the LiDAR ground truth to offer supervision for
depth maps. We adopt the silog loss to depth supervision:

Lsilog =
1

n

∑
i

d2i −
λ

n2
(
∑
i

di)
2, (3)

where di = log yi− log y∗i , yi represents the predicted depth
of i-th pixel and y∗i represents the ground truth depth of i-th
pixel. We set λ = 0.85.

Furthermore, we use the AugMix loss to make the model
able to process OoD data. AugMix data augmentation
method [3] which mixs the augmented images. We first
use AugMix to process the surrounding-view images Is and
get the augmented images Ia. Then, we use our DINO-SD
to estimate the depth maps Da of the augmented images Ia,
and use the AugMix loss to make Ds and Da have similar
distributions. In our experiments, we perform two separate
AugMix operations on Is to obtain Da1 and Da2, and calcu-
lated the difference between the Ds, Da1, Da2 distributions
by JS divergence:

Dmix =
1

3
(Ds +Da1 +Da2),

LAugMix =
1

3
(KL(Ds||Dmix) +KL(Da1||Dmix)

+KL(Da2||Dmix)),

(4)

where Dmix represents the mixed depth map and KL repre-
sents the KL divergence.

We also use the smooth loss to maintain the depth map
consistency:

Lsmooth =
∑
i

|∂xd∗i |e−|∂xIi| + |∂yd∗i |e−|∂yIi|, (5)

where d∗i = di/di.
Our loss is the combination of silog loss, augmix loss,

and smooth loss:

L = Lsilog + αLsmooth + βLAugMix, (6)

we set α = 10−3 and β = 10−2.

2.4. Testing Pipeline

Our testing pipeline is shown in figure2b. For surrounding-
view OoD images, we perform image denoise and equalize
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Figure 1. Our DINO-SD model: Our DINO-SD model use the pretrained DINOv2 as encoder, M-DPT and DPT as decoder.
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Figure 2. Our training and testing pipeline.

operations on the OoD images and then input into our trained
DINO-SD. We adopt donoho et al. image denoise method[4].
We did not use model ensemble methods to improve the
performance of our method.

3. Experiments

3.1. Datasets

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [5] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [25] and tested on the held-out competition
evaluation sets. The evaluation data was created following
RoboDepth [19, 26, 27], RoboBEV [28–30], and Robo3D
[31, 32]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR
failures. For more details, please refer to the corresponding
GitHub repositories.

Implementation Details The model is implemented based
on the MMDetection3D codebase [33]. The DINO-SD
framework is implemented using PyTorch. It utilizes four
NVIDIA GTX 3090 GPUs for model training, each config-
ured with a batch size of 1x6 (for six views). On the leader-
board, our method secured first place across all six metrics.
We use the DINOv2 [1] as the backbone, which is pretrained
on a massive dataset named LVD-142M, comprising 142
million images. This dataset is assembled from ImageNet-
22k, the training split of ImageNet-1k, Google Landmarks,
and several fine-grained datasets. In our DINO-SD model,
we use the last four blocks of the DINOv2 encoder to extract
image features, the M-DPT and DPT to decode feature maps.
For the penultimate third and penultimate fourth blocks, we
processed the features using M-DPT, with the resample scale
set to 1 and 0.5 respectively. For the penultimate and penul-
timate blocks, we processed the features using DPT with the
resample scale set to 2 and 4, respectively. The learning rate
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Table 1. Ablation results of DinoSurDepth on the RoboDrive cimpetition leaderboard.The symbol × indicates that the module was not used,
the symbol ✓ indicates that the module was used, and the best results are highlighted in bold.

Method attention denoise equalize Abs Rel↓ Sq Rel↓ RMSE↓ log RMSE↓ a1 ↑ a2 ↑ a3 ↑
SurroundDepth(Baseline) self attention × × 0.3039 3.0596 8.5285 0.4003 0.5439 0.7839 0.8911
DINO-SD × × × 0.2654 2.5803 8.2702 0.3738 0.5873 0.8220 0.9128
DINO-SD self attention × × 0.2162 1.9451 7.6721 0.3289 0.6702 0.8512 0.9279
DINO-SD self attention ✓ × 0.2074 1.8087 7.4020 0.3145 0.6887 0.8588 0.9340
DINO-SD self attention × ✓ 0.2078 1.7107 7.0786 0.3091 0.6844 0.8611 0.9370
DINO-SD self attention ✓ ✓ 0.2052 1.7246 7.1974 0.3075 0.6900 0.8651 0.9395
DINO-SD adjacent-view cross attention ✓ ✓ 0.1870 1.4683 6.2365 0.2760 0.7339 0.8952 0.9531

Table 2. Quantitative results on the Robodrive competition(Track
4).The best scores of each metric are highlighted in bold.

Team Abs Rel↓ Sq Rel↓ RMSE↓ log RMSE↓ a1 ↑ a2 ↑ a3 ↑
HIT-AIIA1 0.187 1.468 6.236 0.276 0.734 0.895 0.953
twolones2 0.211 1.655 6.327 0.294 0.686 0.880 0.946
CUSTZS3 0.264 2.320 7.961 0.363 0.578 0.816 0.913

for the encoder is 5e-6 and the learning rate for the decoder
is 2e-5. We employed the CosineAnnealingWarmRestarts
method for our model’s optimizer. This scheduler adjusts
the learning rate following a cosine annealing pattern, pe-
riodically resetting to enhance convergence. We spent 18
hours training for 5 epochs, but ultimately found that the
weights from the first epoch achieved the best results on
the test set (corrupted images). We believe this was mainly
due to the following reasons: Firstly, our batch size was
relatively large (4 GPUs × 6 views), which led to the model
converging quickly; Secondly, there was a significant distri-
bution shift between the corrupted images and clean images,
and learning too much from the clean images easily led to
overfitting.
Comparative Study The benchmark uses the original depth
of corruption images as ground truth for evaluation purposes.
Corruptions are simulated through algorithms encompassing
18 types, namely: darkness, brightness, defocus blur, con-
trast, JPEG compression, impulse noise, motion blur, snow,
zoom blur, frost, pixelation, color, quantization, elastic trans-
formation, Gaussian noise, fog, ISO noise, shot noise, and
glass blur. Table 2 compares the model’s performance with
that of other teams on the RoboDrive competition leader-
board.
Ablation Study In Table 1, we assess the impact of various
repair algorithms, decoders, and backbones. The results
demonstrate that all configurations yield improvements in
the depth estimation task.

The first line is the official baseline SurroundDepth. We
first try DINOv2 as encoder and DPT as decoder. The sec-
ond line shows that although our DINO-SD do not use any
attention mechanism, our DINO-SD performance is better
than baseline. In line 3, we try to introduce self attention into
DPT and the model performance improved a lot. In lines 4-6,

we explore the impact of image denoise and equalization on
the results. The results show that both image denoise and
equalization help to improve the performance of the model,
and the improvement effect is greater when used together. In
line 7, we change the self attention into adjacent view cross
attention and the results show that the adjacent-view cross
attention is better than self attention. The reason adjacent-
view cross attention performance better than self attention
has explained in S3Depth[18], the adjacent views can offer
direct environment information compared with non-adjacent
views.

4. Summary
In this work, we propose the DINO-SD, a novel framework
that focuses on improving the robustness of surround-view
depth estimation model. We add attention mechanism into
DPT and improved the performance of model. The results
show that our method is able to handle various corruptions.
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