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Abstract

The failure of vehicle-mounted cameras and LiDAR sen-
sors is inevitable in practice, resulting in incomplete data.
To enhance the ability to robustly handle incomplete data,
we propose a robust alignment method (RobuAlign) in Multi-
Modal 3D object detection. We design a novel corruption
simulation method. During the preprocessing process, we
use a variety of sampling methods on input images and point
clouds to simulate different degrees of sensor failures. With
the image encoder and point cloud encoder, we obtain image
Bird’s Eye View (BEV) features and LiDAR BEV features. To
improve image BEV features, we apply depth prior generated
by point cloud projection. At last, we combine the enhanced
image BEV features with LiDAR BEV features. Our method
achieves significant improvements (i.e., 32.69% mAP and
46.56% NDS).

1. Introduction
Multi-modal fusion promotes autonomous driving systems
[1–3]. Different sensors can enhance each other. For ex-
ample, camera data are superior in providing semantic and
textural information in a perspective view, when estimating
depth information from images, the accuracy of recover-
ing 3D structures may be compromised due to the error
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Figure 1. Through the proposed Corruption Simulation strategy,
our model provides strong robustness even in the absence of LiDAR
beams(e.g., common corruptions and sensor failures).

of camera-LiDAR calibration. By contrast, point clouds
provide much spatial topological structure and geometry in-
formation [4–7]. Integrating data from various sensors, such
as 2D images, and LiDAR, and harmonizing their character-
istics in a unified manner becomes pivotal.

Due to villainous weather, complex lighting conditions,
and ill-posed scenes, unexpected situations such as hardware
failures or sensor malfunctions are often encountered [8].
Existing LiDAR-camera fusion methods lack sufficient ro-
bustness in these ill-posed scenarios. Current multi-modal
fusion methods may be influenced by missing information
from images or inaccurate 3D depth signals from LiDAR
sensors, leading to a degradation in performance under such
extreme conditions [9, 10].

We analyzed the fundamental reasons for the lack of
robustness in existing methods. Currently, multi-modal
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Figure 2. The architecture of RobuAlign network. RobuAlign consists of four parts: image feature extractor, point cloud feature encoder,
multi-modal fusion module, and BEV Encoder.

3D object detection methods are mainly divided into hard-
correlation [4, 11, 12] and soft-correlation methods [13, 14]:
1) Hard correlation methods are efficient, but it has inher-
ent drawback lies in the offset between LiDAR and image
calibration coefficients, as well as the projection errors in
transforming images from the PV space to the Bird’s Eye
View (BEV) space. When data loss occurs due to LiDAR
or camera failures, it exacerbates the inherent errors of hard
correlation. 2) Soft-correlation methods mainly rely on the
powerful information interaction capabilities of transform
and cross-attention to associate LiDAR and image features.
If point clouds are too sparse or the images drop frames,
queries in the Transformer will be unable to retrieve corre-
sponding relevant features, resulting in misalignment.

To address the aforementioned issues and enhance the
robustness of the network to extreme driving scenarios, we
propose a corruption simulation strategy. For simulating
camera failures, we randomly mask out one perspective of
the surround-view images. To simulate distortions in LiDAR
data, we uniformly downsample the global point cloud data
by 1/5 and 1/10 to represent different levels of LiDAR sen-
sor distortions, as shown in Fig. 1. These two modalities of
data augmentation strategies are performed simultaneously.
Through continuous optimization of training strategies and
experimental validation, adopting a 1/10 uniform downsam-
pling strategy for LiDAR point clouds achieves optimal re-
sults in the twenty-fourth iteration, surpassing the baseline
network NDS by 5.3% and mAP by 10.46%. With our cor-
ruption simulation 3D detection network can adapt to sudden

or continuous sensor failures.

2. Related Work
In this section, we review various methods for object detec-
tion, including camera-based methods, LiDAR-based meth-
ods, and multi-sensor fusion methods.

2.1. Camera-Based Methods

Among various camera-based methods [15–20], those based
on Bird’s Eye View (BEV) seem to exhibit more promi-
nent performance. BEVDet [15] is a camera-based method
that performs 3D object detection in BEV. In camera-
based 3D object detection, achieves significant improvement.
BEVDet4D [16] is an enhanced version of BEVDet [15],
which adds temporal cues. Specifically, after the View Trans-
former stage, it aligns and fuses the current frame’s BEV
features with the previous frame’s BEV features, doubling
the BEV features and allowing camera-based methods to
achieve performance close to that of LiDAR-based methods.

2.2. LiDAR-Based Methods

LiDAR-based methods [5, 21, 22] use point clouds as input,
which provide rich spatial information. With point clouds,
accurate depth values can be obtained, which is an advantage
that camera-based methods do not have [21, 23–28]. On the
nuScenes [1] validation and test sets, LiDAR-based methods
generally outperform camera-based methods. Multi-Sensor
Fusion Methods. Current multi-sensor fusion works can be
summarized as follows: some works [13, 14] use extracted
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features from images and point clouds as tokens, and then
use Transformer [29] and its attention mechanism to predict
3D bounding boxes. Some works [4, 12] fuse image BEV
features and point cloud features into a joint BEV, which is
then processed through a BEV Encoder. Some other works
[30] focus on preserving modality-specific useful informa-
tion, instead of directly adopting multi-modal fusion.

3. Method
3.1. Overview

To address the challenges faced by existing LiDAR-camera
fusion methods [4, 12–14, 30] in dealing with common
corruption and sensor failures, we propose the RobuAlign
method. Our overall architecture is shown in Fig. 2. At
the pre-processing stage, we first apply a corruption simu-
lation strategy by randomly masking one image and using
uniform downsampling on the global point cloud to simulate
multi-sensor failures.

For the image branch, Fin is first processed through an
image encoder composed of ResNet [31], Swin Transformer
[32], and FPN [33], yielding image features Fout. Subse-
quently, the Lift-Splat-Shoot [34] method is taken, in con-
junction with the depth map Fdepth generated from the point
cloud, to convert image features to image BEV features, re-
sulting in Fbev. For the point cloud branch, Pin is first prepro-
cessed by a voxel encoder and an intermediate encoder, then
point cloud features Pout are extracted through a point cloud
encoder consisting of VoxelNet [35] and SECOND [36]. Fi-
nally, Fout and Pout are simply concatenated to obtain multi-
modal BEV features of MMbev = Concat(Fbev, Pout).

3.2. Simulation Strategy

In conventional training for 3D object detection, the possi-
bility of sensor damage is typically not taken into account.
Consequently, models trained in this manner may experience
a decrease in accuracy in areas where sensors encounter
issues. To enhance the overall robustness of the model in par-
tial abnormal situations, we simulate corruption and sensor
failures similar to those depicted in Fig. 3. Our corruption
simulation involves two scenarios: damage to one perspec-
tive of the camera results in the failure of obtaining images,
and malfunction of LiDAR sensor leads to sparse point cloud
scans. To mimic the above scenarios, we propose a corrup-
tion simulation strategy. For one thing, we simulate the
malfunction of a certain camera of camera clusters by dis-
carding one image. For another, down-sampling is applied
to the corresponding point cloud to mimic two levels of data
missing.

Track 5 primarily explored the model’s ability to handle
partial missing sensor data. Normally, each sample includes
a 360-degree view composed of six camera images (See Fig.
3(a)), a point clouds from a rooftop LiDAR (See Fig. 3(c)),

(a) Normal Image

(b) Corrupted Image

(c) Normal Pointcloud (d) Corrupted Pointcloud

Figure 3. Comparison of normal and corrupted data

and data from five millimeter-wave radars (radar was not
considered in this competition). We noticed that in the test
set, camera images might appear masked (See Fig. 3(b)), and
point clouds may become sparser (See Fig. 3(d)). Therefore,
we simulate these forms of corruption by randomly masking
camera images and sub-sampling point clouds at ratios of
1/10 and 1/5 respectively.

3.3. Network

The input image tensor is Fi ∈ RBN×3×H×W , where
B is the batch size, N is the number of views, H×W
is the size of images. We utilize Swin (including Swin-
Tiny, Swin-Base, Swin-Large, etc.) [32] or ResNet [31]
as the backbone to obtain image features at three scales,
F1 ∈ RBN×512×H

8 ×W
8 , F2 ∈ RBN×1024× H

16×
W
16 , and

F3 ∈ RBN×2048× H
32×

W
32 respectively. And FPN [33] as

the neck of the image branch reduces the dimensions of the
feature maps Fout ∈ RB×N×128×H

8 ×W
8 .

We also need to transform the image features to image
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Figure 4. Qualitative comparison between RobuAlign and other SOTA methods on the nuScenes dataset. Purple boxes and green boxes are
the predictions and ground truth, respectively. Best viewed with color and zoom-in.

BEV features, which requires depth estimation of image
features. Benefiting from the Lift-Splat-Shot [34], we can
obtain depth distribution of image features by using depth
ground truth Fdepth ∈ RBN×3×H×W ,which is derived from
the projection of LiDAR, to supervise the transformation pro-
cess with the same loss function as BEVDepth [37]. Efficient
Voxel Pooling module [9] is used to aggregate BEV features
Fbev ∈ RN×32×256×256. For the point cloud branch, we first
voxelize the point cloud with [35, 36, 38–40] to get the 3D
voxel features Pin ∈ RN×5, where N indicates the number
of voxels, 5 describes the number of features obtained per
voxel. VoxelNet [35] is employed as the 3D Feature Ex-
tractor, we further use SECONDFPN [36] as our 3D Neck
network to obtain LiDAR features Pout ∈ RB×384×256×256.
Considering the efficiency of our network, we simply con-
catenate the LiDAR BEV features and image BEV features:
MMbev ∈ RB×160×256×256 = Concat(Fbev, Pout), and
adopt the same effective post-processing process as DAL
[12].

4. Experiments

4.1. Datasets

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [41] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [1] (which contains 700 scenes) and tested

on the held-out competition evaluation sets (which contains
150 scenes). The evaluation data was created following Ro-
boDepth [8, 42, 43], RoboBEV [10, 44, 45], and Robo3D
[46, 47]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR
failures. For more details, please refer to the corresponding
GitHub repositories.

4.2. Evaluation Metrics

For 3D object detection, official pre-defined metrics from
nuScenes [1] are as follows: mean Average Precision
(mAP), Average Translation Error (ATE), Average Scale
Error (ASE), Average Orientation Error (AOE), Average
Velocity Error (AVE), Average Attribute Error (AAE), and
nuScenes Detection Score (NDS).

4.3. Training Schedules

The framework is implemented using the PyTorch frame-
work [48] and is based on the MMDetection3D codebase
[49]. Our models are trained with a batch size of 24 on 3090
GPUs. We load the pre-trained ResNet101 and train our
model for 24 epochs with CBGS using cycle learning rate
policy with an initial value of 2.0 × 10−4. Especially, we
adjust the learning rate to 1/2 in the 20th iteration, and do the
same in the 23rd iteration, affected by common corruption
and sensor failure, the long-tail distribution phenomenon of
data is more serious, so we use the same loss function as
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Table 1. Ablation experiments on Robodrive-sensor-p2.

Versions NDS mAP mATE mASE mAOE mAVE mAAE

DAL-Large [12] 41.26 22.20 40.97 28.89 60.42 45.26 22.86

version1 44.02 26.18 40.89 28.20 57.96 42.64 21.01

version2 45.07 28.61 39.34 27.89 57.46 45.32 22.28

version3 45.17 28.74 39.23 27.76 57.36 45.25 22.39

version4 46.20 32.43 41.64 28.12 61.35 46.53 22.45

version5 46.56 32.69 41.38 28.10 60.00 45.79 22.61

Table 2. Comparison against LiDAR-Camera Fusion Methods

Modal NDS mAP mATE mASE mAOE mAVE mAAE

DeepInteraction-Base [30] 35.69 18.03 41.30 38.82 59.33 65.93 27.86

BEVFusion [4] 39.13 21.59 44.02 29.96 52.97 64.62 25.06

DAL-Large [12] 41.26 22.20 40.97 28.89 60.42 45.26 22.86

Ours 46.56 32.69 41.38 28.10 60.00 45.79 22.61

DAL [12] to enhance static data.

4.4. Ablation Study

We conducted ablation studies regarding: 1) image-
processing backbone, 2) corruption simulations, and 3) train-
ing schedules.

We design 5 versions. Let us first introduce the common
modules they use. For all versions, we randomly mask one
camera image from surrounding views and use FPN [33] as
the neck of the image branch, Lift-Splat-Shot [34] as the 2D
to 3D Transformer, and VoxelNet [35] and SECOND [36]
as the backbone and neck of the point cloud branch.

In the following, we introduce the differences between
five versions:
• Version 1: We use ResNet50 [31] as the image-processing

backbone, uniformly sub-sample the point cloud by 1/5
and apply image masking with approximately 40% of
the overall dataset, training for 20 epochs.

• Version 2: We use ResNet50 [31] as the image-processing
backbone, uniformly sub-sample the point cloud by 1/5
and apply image masking to the overall dataset, training
for 24 epochs.

• Version 3: We use ResNet50 [31] as the image-processing
backbone, uniformly sub-sample the point cloud by 1/5
and apply image masking to the overall dataset, training
for 20 epochs.

• Version 4: We use ResNet50 [31] as the image-processing
backbone, uniformly sub-sample the point cloud by 1/10
and apply image masking to the overall dataset, training
for 24 epochs.

• Version 5: We use ResNet101 [31] as the image-
processing backbone, uniformly sub-sample the point
cloud by 1/10 and apply image masking to the overall
dataset, training for 30 epochs.
For the best-performing version 5, we switch to a larger

backbone ResNet101 [31], use the most effective corruption
simulation strategies from the previous versions, and appro-
priately extend the training schedule for 30 epochs. This
ensures that the model can adequately fit the corruption data
without overfitting, achieving the highest NDS among all
the versions. As shown in Table. 1, Our network surpasses
the baseline by 5.3% NDS, 10.49% mAP. The corruption
simulation strategy has greatly improved the robust perfor-
mance of the network, completing 3D detection tasks under
extremely harsh conditions.

4.5. Comparison Against LiDAR-Camera Fusion
Methods

As shown in Table. 2, our method, RobuAlign, outperforms
the current predominant LiDAR-Camera Fusion methods
[4, 12, 13, 30] on the robodrive leaderboard, significantly
improves mAP by 14.66%, and NDS by 10.87%. The supe-
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rior performance of our method is owed to our corruption
simulation strategy and robustness-aware multi-modal fusion
module. Our corruption simulation strategy provides our net-
work training with various challenging data, improving the
robustness, and alleviating the problem of sensor failures. On
account of the property of the outdoor point clouds, namely
sparsity and non-uniform density, it is prone to result in the
lose of the 3D topology and geometric relations. Our robust
multi-modal correlation structure and pre-training method
alleviates this problem greatly. As shown in the red box
region in the Fig. 4, we can accurately detect the object,
regardless of whether it is close or far. It is obvious that the
laser scan is missing to a certain extent, which has signifi-
cant affects on the accurate detection of the objects by other
SOTA methods.

5. Conclusion
In the 2024 RoboDrive Challenge’s Track 5: Robust Multi-
Modal BEV Detection, we propose a novel robust multi-
modal alignment module with brilliant corruption simula-
tions on the training set to enhance the model’s robustness
to partial missing sensor data and adopt different training
schedules to ensure the model and data were well-fitted.
Ultimately, these improvements led us to achieve third place.
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López-Antequera, and Peter Kontschieder. Disentangling
monocular 3d object detection. In ICCV, pages 1991–1999,
2019.

[20] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin.
Fcos3d: Fully convolutional one-stage monocular 3d object
detection. In ICCV, pages 913–922, 2021.

6



[21] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-
based 3d object detection and tracking. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11784–11793, 2021.

[22] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and
Gang Yu. Class-balanced grouping and sampling for point
cloud 3d object detection. arXiv preprint arXiv:1908.09492,
2019.

[23] Youquan Liu, Lingdong Kong, Jun Cen, Runnan Chen, Wen-
wei Zhang, Liang Pan, Kai Chen, and Ziwei Liu. Segment any
point cloud sequences by distilling vision foundation mod-
els. In Advances in Neural Information Processing Systems,
volume 36, 2024.

[24] Lingdong Kong, Jiawei Ren, Liang Pan, and Ziwei Liu.
Lasermix for semi-supervised lidar semantic segmentation.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21705–21715, 2023.

[25] Fangzhou Hong, Lingdong Kong, Hui Zhou, Xinge Zhu,
Hongsheng Li, and Ziwei Liu. Unified 3d and 4d panoptic seg-
mentation via dynamic shifting networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 46(5):3480–
3495, 2024.

[26] Shuo Wang, Xinhai Zhao, Hai-Ming Xu, Zehui Chen,
Dameng Yu, Jiahao Chang, Zhen Yang, and Feng Zhao. To-
wards domain generalization for multi-view 3d object detec-
tion in bird-eye-view. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13333–13342, 2023.

[27] Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun.
Petr: Position embedding transformation for multi-view 3d
object detection. In European Conference on Computer Vi-
sion, pages 531–548. Springer, 2022.

[28] Lingdong Kong, Niamul Quader, and Venice Erin Liong.
Conda: Unsupervised domain adaptation for lidar segmen-
tation via regularized domain concatenation. In IEEE In-
ternational Conference on Robotics and Automation, pages
9338–9345, 2023.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 30, 2017.

[30] Zeyu Yang, Jiaqi Chen, Zhenwei Miao, Wei Li, Xiatian Zhu,
and Li Zhang. Deepinteraction: 3d object detection via modal-
ity interaction. 35:1992–2005, 2022.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, pages 10012–10022, 2021.

[33] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2117–2125,
2017.

[34] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding
images from arbitrary camera rigs by implicitly unprojecting
to 3d. In ECCV, pages 194–210. Springer, 2020.

[35] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4490–4499, 2018.

[36] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10):3337, 2018.

[37] Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran
Wang, Yukang Shi, Jianjian Sun, and Zeming Li. Bevdepth:
Acquisition of reliable depth for multi-view 3d object detec-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 1477–1485, 2023.

[38] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous driv-
ing. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1907–1915, 2017.

[39] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous driv-
ing. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1907–1915, 2017.

[40] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-
time 3d object detection from point clouds. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7652–7660, 2018.

[41] Lingdong Kong, Shaoyuan Xie, Hanjiang Hu, Yaru Niu,
Wei Tsang Ooi, Benoit R. Cottereau, Lai Xing Ng, Yuexin
Ma, Wenwei Zhang, Liang Pan, Kai Chen, Ziwei Liu, We-
ichao Qiu, Wei Zhang, Xu Cao, Hao Lu, Ying-Cong Chen,
Caixin Kang, Xinning Zhou, Chengyang Ying, Wentao Shang,
Xingxing Wei, Yinpeng Dong, Bo Yang, Shengyin Jiang,
Zeliang Ma, Dengyi Ji, Haiwen Li, Xingliang Huang, Yu Tian,
Genghua Kou, Fan Jia, Yingfei Liu, Tiancai Wang, Ying Li,
Xiaoshuai Hao, Yifan Yang, Hui Zhang, Mengchuan Wei,
Yi Zhou, Haimei Zhao, Jing Zhang, Jinke Li, Xiao He, Xiao-
qiang Cheng, Bingyang Zhang, Lirong Zhao, Dianlei Ding,
Fangsheng Liu, Yixiang Yan, Hongming Wang, Nanfei Ye,
Lun Luo, Yubo Tian, Yiwei Zuo, Zhe Cao, Yi Ren, Yunfan Li,
Wenjie Liu, Xun Wu, Yifan Mao, Ming Li, Jian Liu, Jiayang
Liu, Zihan Qin, Cunxi Chu, Jialei Xu, Wenbo Zhao, Junjun
Jiang, Xianming Liu, Ziyan Wang, Chiwei Li, Shilong Li,
Chendong Yuan, Songyue Yang, Wentao Liu, Peng Chen, Bin
Zhou, Yubo Wang, Chi Zhang, Jianhang Sun, Hai Chen, Xiao
Yang, Lizhong Wang, Dongyi Fu, Yongchun Lin, Huitong
Yang, Haoang Li, Yadan Luo, Xianjing Cheng, and Yong
Xu. The robodrive challenge: Drive anytime anywhere in any
condition. arXiv preprint arXiv:2405.08816, 2024.

[42] Lingdong Kong, Shaoyuan Xie, Hanjiang Hu, Benoit Cot-
tereau, Lai Xing Ng, and Wei Tsang Ooi. The ro-
bodepth benchmark for robust out-of-distribution depth es-
timation under corruptions. https://github.com/
ldkong1205/RoboDepth, 2023.

[43] Lingdong Kong, Yaru Niu, Shaoyuan Xie, Hanjiang Hu,
Lai Xing Ng, Benoit Cottereau, Ding Zhao, Liangjun Zhang,
Hesheng Wang, Wei Tsang Ooi, Ruijie Zhu, Ziyang Song,
Li Liu, Tianzhu Zhang, Jun Yu, Mohan Jing, Pengwei Li,
Xiaohua Qi, Cheng Jin, Yingfeng Chen, Jie Hou, Jie Zhang,
Zhen Kan, Qiang Lin, Liang Peng, Minglei Li, Di Xu, Chang-
peng Yang, Yuanqi Yao, Gang Wu, Jian Kuai, Xianming Liu,
Junjun Jiang, Jiamian Huang, Baojun Li, Jiale Chen, Shuang

7

https://github.com/ldkong1205/RoboDepth
https://github.com/ldkong1205/RoboDepth


Zhang, Sun Ao, Zhenyu Li, Runze Chen, Haiyong Luo, Fang
Zhao, and Jingze Yu. The robodepth challenge: Methods
and advancements towards robust depth estimation. arXiv
preprint arXiv:2307.15061, 2023.

[44] Shaoyuan Xie, Lingdong Kong, Wenwei Zhang, Jiawei Ren,
Liang Pan, Kai Chen, and Ziwei Liu. Robobev: Towards
robust bird’s eye view perception under corruptions. arXiv
preprint arXiv:2304.06719, 2023.

[45] Shaoyuan Xie, Lingdong Kong, Wenwei Zhang, Jiawei Ren,
Liang Pan, Kai Chen, and Ziwei Liu. The robobev benchmark
for robust bird’s eye view detection under common corrup-
tion and domain shift. https://github.com/Daniel-
xsy/RoboBEV, 2023.

[46] Lingdong Kong, Youquan Liu, Xin Li, Runnan Chen, Wen-
wei Zhang, Jiawei Ren, Liang Pan, Kai Chen, and Ziwei
Liu. Robo3d: Towards robust and reliable 3d perception
against corruptions. In IEEE/CVF International Conference
on Computer Vision, pages 19994–20006, 2023.

[47] Lingdong Kong, Youquan Liu, Xin Li, Runnan Chen, Wen-
wei Zhang, Jiawei Ren, Liang Pan, Kai Chen, and Ziwei
Liu. The robo3d benchmark for robust and reliable 3d percep-
tion. https://github.com/ldkong1205/Robo3D,
2023.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, 2019.

[49] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020.

8

https://github.com/Daniel-xsy/RoboBEV
https://github.com/Daniel-xsy/RoboBEV
https://github.com/ldkong1205/Robo3D
https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d

	. Introduction
	. Related Work
	. Camera-Based Methods
	. LiDAR-Based Methods

	. Method
	. Overview
	. Simulation Strategy
	. Network

	. Experiments
	. Datasets
	. Evaluation Metrics
	. Training Schedules
	. Ablation Study
	. Comparison Against LiDAR-Camera Fusion Methods

	. Conclusion

