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Abstract

In this paper, we elaborate on the practical application
and demonstration of Cross-Modal Transformer (CMT) for
Track 5 – Robust Multi-Modal BEV Detection, in the 2024
RoboDrive Challenge. Track 5 mainly motivates the devel-
opment of robust multi-modal 3D object detection models
under sensor failures for safe perception of autonomous
driving. Without explicit view transformations, CMT takes
images and point cloud tokens as input and outputs accurate
3D bounding boxes directly. The simple structural design of
the model achieved excellent performance in this track, with
an improvement of 23.13% on NDS and 68.36% on mAP,
respectively, compared to the baseline of Track5.

1. Introduction

Autonomous vehicles are usually deployed with LiDAR
sensors, camera sensors, radar sensors, etc. [1]. The data
collected by LiDAR sensors and camera sensors would be
the most used by autonomous driving perception algorithms
today [2–4]. The 2D image data captured by camera sensors
contains rich texture information, and the 3D point cloud
data collected by LiDAR sensors contains geometrical in-
formation that expresses the surrounding objects, and the
two sensors mutually complement each other, thus becoming
the data source for many multi-modal 3D object detection
models [5–15].

Based on this fact, the 2024 RoboDrive Challenge [16]
considers in depth the problem of robustness of multi-modal
3D object detection models in the presence of sensor failures,
provoking more researchers to develop suitable detection
frameworks to handle this natural and realistic situation.

*Advisor.
Technical Report of the 2024 RoboDrive Challenge.
Track 5: Robust Multi-Modal BEV Detection.

The Out-of-Distribution (OOD) data under sensor failure is
specifically designed in Track 5, including: (1) loss of certain
camera frames during the driving system sensing process;
(2) loss of one or more camera views during the driving
system sensing process; (3) loss of the roof-top LiDAR
view during the driving system sensing process. More and
more methods choose to fuse multi-modal features under
the BEV space based on the advantages of BEV unified
representation. Typically, BEVFusion [17], and UniBEV
[18] all fused image features and point cloud features in
BEV space and achieved excellent perceptual performance
[19].

Although BEV-based multi-modal 3D object detection
models have achieved promising perceptual performance,
there has been a relative lack of in-depth research in the face
of reality under sensor failures. For example, what are the
consequences of losing a particular camera view? Intuitively,
such a situation would lead to a degradation of perceptual
performance, which in turn causes safety accidents, which
is unacceptable for autonomous driving. Therefore, this is
the subject of Track 5 of the 2024 RoboDrive Challenge
[16], i.e., the design of more robust multi-modal 3D object
detection models under sensor failures. Some work already
exists to start focusing on the robustness of multi-modal 3D
object detection models under sensor failures. RobustBEV
[20] presented Y -mode and λ-mode camera sensor failure
scenarios to evaluate the robustness of 3D object detection
models and found that there are 3D object detection models
with huge performance degradation. Robo3D [21] proposed
more scenarios of sensor failures and evaluated the robust-
ness of a large number of 3D object detection models, all
of which came to the consistent conclusion that 3D object
detection models struggle to cope with sensor failures.

Only comparatively little work has been done to develop
robust 3D object detection algorithms to address sensor fail-
ures. M-BEV [22] simulated camera sensor failures by mask-
ing the camera feature and then reconstructing that camera
feature, but lacked research on LiDAR sensor failures. Al-
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Figure 1. The framework of the CMT.

though CMT [23] was not developed to handle sensor fail-
ures, it was found that CMT still has better robustness when
missing camera sensors or LiDAR sensors. We believe that
the robustness is mainly due to its designed mask training
strategy, i.e., randomly masking the image or point cloud
during the training process.

Based on the above findings, we applied CMT to the
data on sensor failures presented in Track5 and achieved
excellent results. Specifically, CMT improved NDS from
39.13 to 48.18 and mAP from 21.59 to 36.35 compared to
the baseline in Track5.

2. Approach
The overall architecture of CMT is shown in Figure 1. The
ring-view camera images and LiDAR point cloud data are ex-
tracted with multi-modal tokens through two individual back-
bone networks. 3D coordinates are encoded into the multi-
modal tokens via coordinate encoding module. Queries from
the position-guided query generator are used to interact with
the multi-modal tokens in the Transformer decoder, which
then predicts the object class as well as the 3D bounding
box.

Coordinates Encoding Module. Along the lines of what
was done in PETR [24], the CMT generates coordinate en-
coding for the image. Since 3D point cloud data comes with
spatial information, it is easier for coordinate encoding rela-
tive to images, and the CMT can directly sample along the
Z-axis to further generate positional embeddings.

Position-guided Query Generator. Inspired by Anchor-
DETR [25] and PETR [24], CMT initializes n reference
points, i.e., anchor points. These anchor points were then
transformed into the 3D world space by a linear transforma-
tion. Finally, these 3D anchor points were projected onto
different modalities and the corresponding point sets were

encoded by the coordinate encoding module. Thus, the posi-
tional embedding of the object query in CMT was obtained
by summing up the point set embeddings of the different
modalities.

The decoders in CMT used the original Transformer de-
coder in DETR [25] with the L decoder layer. For each
decoder layer, the position-guided query interacts with the
multi-modal token and updates its representation. Two feed-
forward networks (FFNs) are used to predict the 3D bound-
ing boxes and classes using the updated queries. Then bipar-
tite matching was used for prediction, focal loss was used
for classification, and L1 loss was used for 3D bounding box
regression.

3. Experiments
This section details the dataset used, as well as detailed
validation results.

3.1. Experimental Setups

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [16] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [2] and tested on the held-out competition
evaluation sets.

The nuScenes dataset [2] is a large-scale autonomous
driving dataset with 3d object annotations. It has a full sen-
sor suite (1 LiDAR, 5 RADAR, 6 cameras, IMU, GPS) with
1,000 scenes of 20 seconds each, with 1,400,000 camera
images and 390,000 LiDAR sweeps. The data was col-
lected from two different cities: Boston and Singapore, with
detailed map information, 1.4M 3D bounding boxes, and
manually annotated visibility, activity, and pose attributes
for 23 object classes.

The evaluation data was created following RoboDepth
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Figure 2. Comparison results on the vanilla nuScenes validation set
and the nuScenes validation set proposed by Robodrive Track5.

[26–28], RoboBEV [19, 29, 30], and Robo3D [21, 31]. The
corruption types are mainly from three sources, namely cam-
era corruptions, camera failures, and LiDAR failures. To
better simulate sensor failures, Track 5 reprocessed the data
to include: (1) loss of certain camera frames during the driv-
ing system sensing process; (2) loss of one or more camera
views during the driving system sensing process; (3) loss of
the roof-top LiDAR view during the driving system sensing
process. For more details, please refer to the corresponding
GitHub repositories.

3.2. Evaluation Metrics

The mean Average Precision (mAP) and nuScenes Detec-
tion Score (NDS) are the default evaluation metrics for the
nuScenes dataset [2], where half of the NDS is based on
mAP and the other half is based on the quality of detection
of mean Average Translation Error (mATE), mean Average
Orientation Error (mAOE), mean Average Velocity Error
(mAVE), mean Average Attribute Error (mAAE) and mean
Average Scale Error (mASE). The track follows these met-
rics to evaluate the perceptual capabilities of the model, with
larger NDS and mAP indicating better perceptual perfor-
mance.

3.3. Implementation Details

The framework is implemented using the PyTorch frame-
work [32] and is based on the MMDetection3D codebase
[33]. The implementation of CMT simply follows the setup
in the paper and the model weights used in this competition
are pre-trained model weights. We modified the inputs to the
model appropriately to satisfy Track5’s data.

3.4. Comparative Study

We compared the performance of CMT to the baseline in
Track5, where “-F” denotes the performance of the model
under the nuScenes validation set for sensor failures pro-
vided in Track5. The detailed results are shown in Figure 2,
where firstly it can be observed that CMT outperforms BEV-
Fusion both in terms of clean performance and perceived
performance under sensor failures. Secondly, it can be seen
that the performance degradation of CMT under sensor fail-
ure is much lower than BEVFusion, e.g., CMT degraded by
33.88% on NDS while BEVFusion degraded by 45.24%.

4. Conclusion
Based on the finding that CMT maintained excellent per-
formance with missing camera data or point cloud data, we
applied it to Track 5-Robust Multi-Modal BEV Detection in
The RoboDrive Challenge. Surprisingly, CMT improved
NDS from 39.13 to 48.18 and mAP from 21.59 to 36.35
compared to the baseline in Track5.

References
[1] Yuexin Ma, Tai Wang, Xuyang Bai, Huitong Yang, Yue-

nan Hou, Yaming Wang, Yu Qiao, Ruigang Yang, Dinesh
Manocha, and Xinge Zhu. Vision-centric bev perception: A
survey. arXiv preprint arXiv:2208.02797, 2022.

[2] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11621–
11631, 2020.

[3] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2446–2454, 2020.

[4] Lingdong Kong, Xiang Xu, Jiawei Ren, Wenwei Zhang,
Liang Pan, Kai Chen, Wei Tsang Ooi, and Ziwei Liu. Multi-
modal data-efficient 3d scene understanding for autonomous
driving. arXiv preprint arXiv:2405.05258, 2024.

[5] Zhe Liu, Tengteng Huang, Bingling Li, Xiwu Chen, Xi Wang,
and Xiang Bai. Epnet++: Cascade bi-directional fusion for
multi-modal 3d object detection. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2022.

[6] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao
Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer: Learn-
ing bird’s-eye-view representation from multi-camera images
via spatiotemporal transformers. In European conference on
computer vision, pages 1–18. Springer, 2022.

[7] Junjie Huang, Guan Huang, Zheng Zhu, Yun Ye, and Dalong
Du. Bevdet: High-performance multi-camera 3d object de-
tection in bird-eye-view. arXiv preprint arXiv:2112.11790,
2021.

3



[8] Lingdong Kong, Jiawei Ren, Liang Pan, and Ziwei Liu.
Lasermix for semi-supervised lidar semantic segmentation.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21705–21715, 2023.

[9] H Hu, F Wang, J Su, Y Wang, L Hu, W Fang, J Xu, and
Z Zhang. Ea-lss: Edge-aware lift-splat-shot framework for
3d bev object detection. arXiv preprint arXiv:2303.17895, 2,
2023.

[10] Zehui Chen, Zhenyu Li, Shiquan Zhang, Liangji Fang,
Qinghong Jiang, Feng Zhao, Bolei Zhou, and Hang Zhao.
Autoalign: Pixel-instance feature aggregation for multi-modal
3d object detection. arXiv preprint arXiv:2201.06493, 2022.

[11] Runnan Chen, Youquan Liu, Lingdong Kong, Xinge Zhu,
Yuexin Ma, Yikang Li, Yuenan Hou, Yu Qiao, and Wenping
Wang. Clip2scene: Towards label-efficient 3d scene under-
standing by clip. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7020–7030, 2023.

[12] Yingwei Li, Adams Wei Yu, Tianjian Meng, Ben Caine, Ji-
quan Ngiam, Daiyi Peng, Junyang Shen, Yifeng Lu, Denny
Zhou, Quoc V Le, et al. Deepfusion: Lidar-camera deep
fusion for multi-modal 3d object detection. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 17182–17191, 2022.

[13] Youquan Liu, Lingdong Kong, Jun Cen, Runnan Chen, Wen-
wei Zhang, Liang Pan, Kai Chen, and Ziwei Liu. Segment any
point cloud sequences by distilling vision foundation mod-
els. In Advances in Neural Information Processing Systems,
volume 36, 2024.

[14] Xiaopei Wu, Liang Peng, Honghui Yang, Liang Xie, Chenxi
Huang, Chengqi Deng, Haifeng Liu, and Deng Cai. Sparse
fuse dense: Towards high quality 3d detection with depth
completion. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5418–5427, 2022.

[15] Lingdong Kong, Youquan Liu, Runnan Chen, Yuexin Ma,
Xinge Zhu, Yikang Li, Yuenan Hou, Yu Qiao, and Ziwei Liu.
Rethinking range view representation for lidar segmentation.
In IEEE/CVF International Conference on Computer Vision,
pages 228–240, 2023.

[16] Lingdong Kong, Shaoyuan Xie, Hanjiang Hu, Yaru Niu,
Wei Tsang Ooi, Benoit R. Cottereau, Lai Xing Ng, Yuexin
Ma, Wenwei Zhang, Liang Pan, Kai Chen, Ziwei Liu, We-
ichao Qiu, Wei Zhang, Xu Cao, Hao Lu, Ying-Cong Chen,
Caixin Kang, Xinning Zhou, Chengyang Ying, Wentao Shang,
Xingxing Wei, Yinpeng Dong, Bo Yang, Shengyin Jiang,
Zeliang Ma, Dengyi Ji, Haiwen Li, Xingliang Huang, Yu Tian,
Genghua Kou, Fan Jia, Yingfei Liu, Tiancai Wang, Ying Li,
Xiaoshuai Hao, Yifan Yang, Hui Zhang, Mengchuan Wei,
Yi Zhou, Haimei Zhao, Jing Zhang, Jinke Li, Xiao He, Xiao-
qiang Cheng, Bingyang Zhang, Lirong Zhao, Dianlei Ding,
Fangsheng Liu, Yixiang Yan, Hongming Wang, Nanfei Ye,
Lun Luo, Yubo Tian, Yiwei Zuo, Zhe Cao, Yi Ren, Yunfan Li,
Wenjie Liu, Xun Wu, Yifan Mao, Ming Li, Jian Liu, Jiayang
Liu, Zihan Qin, Cunxi Chu, Jialei Xu, Wenbo Zhao, Junjun
Jiang, Xianming Liu, Ziyan Wang, Chiwei Li, Shilong Li,
Chendong Yuan, Songyue Yang, Wentao Liu, Peng Chen, Bin
Zhou, Yubo Wang, Chi Zhang, Jianhang Sun, Hai Chen, Xiao
Yang, Lizhong Wang, Dongyi Fu, Yongchun Lin, Huitong
Yang, Haoang Li, Yadan Luo, Xianjing Cheng, and Yong

Xu. The robodrive challenge: Drive anytime anywhere in any
condition. arXiv preprint arXiv:2405.08816, 2024.

[17] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang,
Huizi Mao, Daniela L Rus, and Song Han. Bevfusion: Multi-
task multi-sensor fusion with unified bird’s-eye view repre-
sentation. In IEEE International Conference on Robotics and
Automation, pages 2774–2781, 2023.

[18] Shiming Wang, Holger Caesar, Liangliang Nan, and Julian FP
Kooij. Unibev: Multi-modal 3d object detection with uniform
bev encoders for robustness against missing sensor modalities.
arXiv preprint arXiv:2309.14516, 2023.

[19] Shaoyuan Xie, Lingdong Kong, Wenwei Zhang, Jiawei Ren,
Liang Pan, Kai Chen, and Ziwei Liu. Benchmarking and im-
proving bird’s eye view perception robustness in autonomous
driving. arXiv preprint arXiv:2405.17426, 2024.

[20] Zijian Zhu, Yichi Zhang, Hai Chen, Yinpeng Dong, Shu Zhao,
Wenbo Ding, Jiachen Zhong, and Shibao Zheng. Understand-
ing the robustness of 3d object detection with bird’s-eye-view
representations in autonomous driving. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
21600–21610, 2023.

[21] Lingdong Kong, Youquan Liu, Xin Li, Runnan Chen, Wen-
wei Zhang, Jiawei Ren, Liang Pan, Kai Chen, and Ziwei
Liu. Robo3d: Towards robust and reliable 3d perception
against corruptions. In IEEE/CVF International Conference
on Computer Vision, pages 19994–20006, 2023.

[22] Siran Chen, Yue Ma, Yu Qiao, and Yali Wang. M-bev:
Masked bev perception for robust autonomous driving. In
AAAI Conference on Artificial Intelligence, volume 38, pages
1183–1191, 2024.

[23] Junjie Yan, Yingfei Liu, Jianjian Sun, Fan Jia, Shuailin Li,
Tiancai Wang, and Xiangyu Zhang. Cross modal transformer:
Towards fast and robust 3d object detection. In IEEE/CVF
International Conference on Computer Vision, pages 18268–
18278, 2023.

[24] Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun.
Petr: Position embedding transformation for multi-view 3d
object detection. In European Conference on Computer Vi-
sion, pages 531–548. Springer, 2022.

[25] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun.
Anchor detr: Query design for transformer-based detector. In
AAAI Conference on Artificial Intelligence, volume 36, pages
2567–2575, 2022.

[26] Lingdong Kong, Shaoyuan Xie, Hanjiang Hu, Lai Xing Ng,
Benoit Cottereau, and Wei Tsang Ooi. Robodepth: Robust
out-of-distribution depth estimation under corruptions. Ad-
vances in Neural Information Processing Systems, 36, 2024.

[27] Lingdong Kong, Shaoyuan Xie, Hanjiang Hu, Benoit Cot-
tereau, Lai Xing Ng, and Wei Tsang Ooi. The ro-
bodepth benchmark for robust out-of-distribution depth es-
timation under corruptions. https://github.com/
ldkong1205/RoboDepth, 2023.

[28] Lingdong Kong, Yaru Niu, Shaoyuan Xie, Hanjiang Hu,
Lai Xing Ng, Benoit Cottereau, Ding Zhao, Liangjun Zhang,
Hesheng Wang, Wei Tsang Ooi, Ruijie Zhu, Ziyang Song,
Li Liu, Tianzhu Zhang, Jun Yu, Mohan Jing, Pengwei Li,
Xiaohua Qi, Cheng Jin, Yingfeng Chen, Jie Hou, Jie Zhang,

4

https://github.com/ldkong1205/RoboDepth
https://github.com/ldkong1205/RoboDepth


Zhen Kan, Qiang Lin, Liang Peng, Minglei Li, Di Xu, Chang-
peng Yang, Yuanqi Yao, Gang Wu, Jian Kuai, Xianming Liu,
Junjun Jiang, Jiamian Huang, Baojun Li, Jiale Chen, Shuang
Zhang, Sun Ao, Zhenyu Li, Runze Chen, Haiyong Luo, Fang
Zhao, and Jingze Yu. The robodepth challenge: Methods
and advancements towards robust depth estimation. arXiv
preprint arXiv:2307.15061, 2023.

[29] Shaoyuan Xie, Lingdong Kong, Wenwei Zhang, Jiawei Ren,
Liang Pan, Kai Chen, and Ziwei Liu. Robobev: Towards
robust bird’s eye view perception under corruptions. arXiv
preprint arXiv:2304.06719, 2023.

[30] Shaoyuan Xie, Lingdong Kong, Wenwei Zhang, Jiawei Ren,
Liang Pan, Kai Chen, and Ziwei Liu. The robobev benchmark
for robust bird’s eye view detection under common corrup-
tion and domain shift. https://github.com/Daniel-
xsy/RoboBEV, 2023.

[31] Lingdong Kong, Youquan Liu, Xin Li, Runnan Chen, Wen-
wei Zhang, Jiawei Ren, Liang Pan, Kai Chen, and Ziwei
Liu. The robo3d benchmark for robust and reliable 3d percep-
tion. https://github.com/ldkong1205/Robo3D,
2023.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, 2019.

[33] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020.

5

https://github.com/Daniel-xsy/RoboBEV
https://github.com/Daniel-xsy/RoboBEV
https://github.com/ldkong1205/Robo3D
https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d

	. Introduction
	. Approach
	. Experiments
	. Experimental Setups
	. Evaluation Metrics
	. Implementation Details
	. Comparative Study

	. Conclusion

