
ASF: Robust 3D Object Detection by Solving Sensor Failures

Hai Chen
Tsinghua University

Beijing China
chber ahu@hotmail.com

Xiao Yang
Tsinghua University

Beijing China
yangxiao19@mails.tsinghua.edu.cn

Lizhong Wang
Tsinghua University

Beijing China
wanglizhong99@outlook.com

Abstract

This paper describes the methodology and results of Track
5 - Robust Multi-Modal BEV Detection in the 2024 Robo-
Drive Challenge. This track focuses on 3D scene perception
robustness under the camera and LiDAR sensor failures,
where sensor failures are included: (1) loss of certain cam-
era frames during the driving system sensing process; (2)
loss of one or more camera views during the driving system
sensing process; (3) loss of the roof-top LiDAR view during
the driving system sensing process. To improve the robust-
ness of the 3D object detection model under these conditions,
we propose a novel method called Against Sensor Failure,
abbreviated as ASF. ASF utilizes self-supervised methods
to reconstruct image features when facing camera sensor
failures. In addition, we also propose the Image feature
Enhancement LiDAR feature (IEL) module, designed to al-
leviate the negative impact of LiDAR sensor failure. Our
results demonstrate obvious improvements over the baseline,
with the ASF method elevating the nuScenes Detection Score
(NDS) from 39.13 to 49.68 and the mean Average Precision
(mAP) from 21.59 to 39.46.

1. Introduction

In the rapidly evolving domain of autonomous driving, the
accuracy and resilience of perception systems are paramount
[1–6]. Recent advancements, particularly in bird’s eye view
(BEV) representations and LiDAR sensing technologies,
have significantly improved in-vehicle 3D scene perception.
Yet, the robustness of 3D scene perception methods under
varied and challenging conditions — integral to ensuring
safe operations — has been insufficiently assessed [7, 8].
Therefore, the 2024 RoboDrive Challenge [9] breaks this
limitation and promotes the development of more robust
autonomous driving perception algorithms.

Technical Report of the 2024 RoboDrive Challenge.
Track 5: Robust Multi-Modal BEV Detection.

The competition was centered around two prevailing
themes: common corruptions and sensor failures [7]. We
focus on the second theme, sensor failures. Sensor failures
are an inevitable problem for autonomous vehicles in real-
world scenarios, and they are also one of the situations that
can easily arise to endanger the safety of autonomous vehi-
cles. Thanks to the powerful expressive ability of BEV, more
and more BEV-based 3D object detection models emerge
and show strong perceptual capabilities. Typically, BEVDet
[10] transforms the ring-viewed 2D image features into BEV
features by View Transformer, and then implements further
feature extraction on the BEV features to achieve effective
performance under the camera-only 3D object detection task.
After that, more BEV-based 3D object detection algorithms
appeared, such as BEVDepth [11] that adds depth supervi-
sion, BEVFormer [12] that introduces temporal information,
and so on Since the features obtained from LiDAR data can
be easily converted to BEV representation, the BEV-based
multi-modal 3D object detection model was proposed [13–
16]. One of the most representative works is BEVFusion
[14], which fused image features and point cloud features in
BEV space and achieved excellent performance on several
tasks [17].

The rapid development of BEV-based 3D object detection
models has also brought further thinking, that is, how safe is
it? Zhu et al. [18] conducted a detailed study and analysis
of BEV-based 3D object detection models under natural cor-
ruptions and adversarial attacks. Recently, RoboBEV [19]
comprehensively evaluated the robustness of BEV-based 3D
object detection models under natural corruptions. Robo3D
[20] has been further extended to analyze the robustness of
the 3D perception algorithms for more hazardous conditions,
including severe weather conditions, data blurring due to
external disturbances, and internal sensor failure. One of the
more practical situations that autonomous vehicles will face
is sensor failure, as practical situations such as deterioration,
bumps, etc. may cause a particular sensor failure, such as the
camera sensor not being able to capture its surroundings. On
the other hand, mutual compensation between sensors can
somewhat mitigate the effects of a particular sensor failure,
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so it is important to investigate the boundaries of multimodal
3D object detection models under sensor failures.

There are some recent studies that are beginning to focus
on this topic. For example, M-BEV [21] tackled camera sen-
sor failures by reconstructing image features of a particular
failed camera sensor. However, the method has not consid-
ered other gains or effects from the introduction of LiDAR
sensors. Considering the low performance of LiDAR sensors
and camera sensors due to damage or failures, MetaBEV
[22] addressed sensor failures through the meta-BEV query
and BEV-evolving decoder of the setup. However, research
for sensor failures is still in its infancy, especially studying
the robustness of multi-modal 3D object detection models in
this setting [23]. Although MetaBEV began its research, it
did not demonstrate high performance and still falls short of
expectations.

Therefore, attracted by The RoboDrive Challenge, we
focused on Track 5-Robust Multi-Modal BEV Detection.
Not limited to us, the competition has attracted attention
from major universities and companies. We proposed a
new multi-modal 3D object detection model against sensor
failures in this competition, named ASF. The method signifi-
cantly improves the performance of the model under sensor
failures, greatly exceeding the baseline in the competition,
with 26.96% improvement in NDS and 82.77% improvement
in mAP.

2. Approach
In this section, we describe the proposed ASF in detail. Our
method is based on CMT [24] improved by adding the self-
supervised pre-training process for the image pipeline and
proposing an Image feature Enhancement LiDAR feature
(IEL) module, which significantly improves the robustness
of the model under sensor failures, and which we rename as
ASF. The detailed pipeline is shown in Figure 1.

Self-supervised pre-training. In this process, the main
solution is proposed for the camera sensor failure. Following
CMT, we use VoVNet [25] as the image backbone to extract
the 2D image features. In the nuScenes [2] dataset, the 6
ring-view cameras capture the surrounding environment, and
there may be unavoidable failures of the 6 cameras, i.e., one
or more of them fail. Inspired by M-BEV [21], we designed
the self-supervised pre-training process for image pipelines
to face this situation. Specifically, we randomly mask a
certain 2D image feature, name the masked-off feature as
Vmask, and then initialize the Vmask using the spatial feature
cues around it. Then, a similar method in [26] was utilized to
generate the 2D positional embedding P2D for it, and finally,
the feature is represented as:

Umask = Vmask + P2D (1)

Finally, we stacked multiple layers of transformers to
regenerate the Umask, and multiple layers of transformers

form the self-supervised pretrained decoder module:

Umask = decoder(Umask) (2)

Where the decoder consists of a self-attention mechanism
and cross-attention mechanism, the cross-attention mecha-
nism reconstructs the Umask from the surrounding spatial
cue features, and the self-attention mechanism further helps
in the Umask reconstruction process. Finally, we minimize
the L2 loss between the original feature Fmask and the re-
constructed feature Umask:

Lpre = ∥Fmask − Umask∥2 (3)

IEL. Typically, LiDAR sensors deteriorate 3D percep-
tion due to practicalities such as incomplete echoes or non-
detection of dark-colored instances (e.g., black cars) and
crosstalk between multiple sensors. To address the situation,
we first reduced the point cloud in the nuScenes [2] from 32
to 16 lines, significantly increasing the sparsity of the point
cloud as a way to simply simulate LiDAR sensor failures.
However, simulating this case would result in more than 0
elements in the voxelized 3D point cloud features, i.e., many
meaningful features are discarded. Therefore, we consider
the use of image features to enhance the point cloud fea-
tures. Specifically, we augment the point cloud features by
projecting the point cloud onto the image coordinate system
and taking out the features of the pixels corresponding to
the point cloud located on the image. However, there are
a large number of background points (as shown in Figure
2), which not only consumes a huge graphic memory space
but also wastes training time. Therefore, we project the
reference point in the CMT onto the image and take out
only the features of the N pixel points around the reference
point to enhance the LiDAR features. This operation not
only allows the taken-out features to gather on the object
but also ensures the disturbance of redundant noise infor-
mation. Finally, we stack multiple layers of cross-attention
mechanisms to enhance LiDAR features.

The rest of the structure of the ASF remains consistent
with the CMT, so the training of the ASF is divided into
two phases, first self-supervised pre-training and then end-
to-end training. In the inference phase, the ASF removes the
masking strategy from the self-supervised pre-training.

3. Experiments
In this section, we present the detailed experimental setup
and the results of the competition.

3.1. Experimental Setups

This work follows the protocol in the 2024 RoboDrive Chal-
lenge [9] when preparing the training and test data. Specif-
ically, the model is trained on the official train split of the
nuScenes dataset [2] (which contains 700 scenes) and tested
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Figure 1. The framework of ASF

Figure 2. Visualization of point cloud projects to images

on the held-out competition evaluation sets (which contains
150 scenes). The evaluation data was created following
RoboDepth [27–29], RoboBEV [7, 19, 30], and Robo3D
[20, 31]. The corruption types are mainly from three sources,
namely camera corruptions, camera failures, and LiDAR
failures. For more details, please refer to the corresponding
GitHub repositories.

3.2. Evaluation Metrics

The mean Average Precision (mAP) and nuScenes Detec-
tion Score (NDS) are the default evaluation metrics for the
nuScenes dataset [2], where half of the NDS is based on
mAP and the other half is based on the quality of detection
of mean Average Translation Error (mATE), mean Average
Orientation Error (mAOE), mean Average Velocity Error
(mAVE), mean Average Attribute Error (mAAE) and mean
Average Scale Error (mASE). Following the nuScenes evalu-
ation and the Track 5 evaluation, we still use these metrics
to measure the effectiveness of the ASF.

Table 1. Comparison results with nuScenes validation set.

Models Modality mAP NDS
BEVFusion [14] C+L 68.5 71.4

FocalFormer3D [36] C+L 70.5 73.1
CMT [24] C+L 70.3 72.9

ASF C+L 67.8 71.3

3.3. Implementation Details

The framework is implemented using the PyTorch frame-
work [32] and is based on the MMDetection3D codebase
[33]. We use the pre-trained weights provided by CMT as
the initial weights of the ASF. Freezing the image encoder
during self-supervised pre-training. To reconstruct the image
features, we stacked 6 layers of decoer and each layer of
decoer consisted of cross-attention and self-attention. In this
process, we set the learning rate to 0.0001, the batch size to
20, and the number of iterations to 48. At the end of this
phase of pre-training, the relevant parameters are frozen and
no parameter updates are performed in subsequent end-to-
end training. In end-to-end training, we train the ASF for
20 epochs at the learning rate of 0.0001 with a batch size of
10. Note that we used CBGS [34] to load the data and the
AdamW [35] optimizer for optimization. The GT sample
augmentation was used for the first 15 epochs and turned off
for the last 5 epochs. In addition, we set N to 10 in the IEL
module.

3.4. Comparative Study

We validated our proposed method on the vanilla nuScenes
validation set and the nuScenes validation set proposed by
Track 5, respectively. BEVFusion [14] serves as the baseline
in Track 5, and the rest of the methods are state-of-the-art
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Figure 3. The 3D perception results with a confidence score greater than 0.1. Figure 2(a) and Figure 2(b) show the results of CMT under the
vanilla nuScenes validation set and the nuScenes validation set provided by Track 5, respectively. Figure 2(c) and Figure 2(d) show the
results of ASF under the vanilla nuScenes validation set and the nuScenes validation set provided by Track 5, respectively. Note that the
green box represents the ground truth 3D bounding box, and the red box represents the predicted 3D bounding box.

Table 2. Comparison results under the nuScenes validation set
provided by Track 5

Model Modality mAP NDS

BEVFusion [14] C+L 21.6 39.1
FocalFormer3D [36] C+L 27.1 43.2
CMT [24] C+L 36.4 48.2
ASF C+L 39.5 49.7

multi-modal 3D object detection models.

It can be found from Table 1 that ASF achieves the worst
clean performance, which is mainly due to the fact that ASF
reduces the 32-line LiDAR to 16-line LiDAR at the point
cloud input, thus leading to some performance degradation.
However, comparable results to these methods have been
achieved, with the best clean performance of FocalFormer3D
dropping from 73.1 to 71.3 on the NDS. Surprisingly, our
proposed ASF shows the most robust performance under the
nuScenes validation set under sensor failure. On the other
hand, FocalFormer3D no longer shows surprising results,
but instead exposes serious potential threats. Although our
approach loses weak clean performance, it greatly improves
the robustness under sensor failure, which is acceptable and
satisfactory.

In addition, we visualize the perceptual results of CMT
and ASF under the vanilla nuScenes validation set and the
nuScenes validation set provided by Track 5. It can be seen
from Figure 3 that a large number of false positive instances
occur under sensor failure compared to normal conditions,
and are accompanied by a certain amount of detection bias
and missed detections. ASF has fewer instances of false
positives and relatively low detection bias compared to CMT.
It is also confirmed in Table 2 that ASF is more robust under
sensor failure.

4. Conclusion
In Track 5-Robust Multi-Modal BEV Detection in the
2024 RoboDrive Challenge, we present a 3D object de-
tection model against sensor faults, called ASF. ASF signifi-
cantly improves perceptual robustness under sensor failures.
ASF proposes two main core components. One is a self-
supervised pre-training process proposed for camera sensor
failures, which mitigates the performance degradation asso-
ciated with the situation by reconstructing the features of the
failed camera. The other is the IEL module that enhances
LiDAR features with image features to face LiDAR sensor
failures. Compared to the baseline in Track 5, ASF signif-
icantly improves the robustness of the 3D object detection
model under sensor failure, and ASF is located in the first
place on the demonstrated leaderboard.
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